問乙個基本的問題。
負數在計算機中如何表示?
舉例來說,+8在計算機中表示為二進位制的1000,那麼-8怎麼表示呢?
很容易想到,可以將乙個二進位制位(bit)專門規定為符號位,它等於0時就表示正數,等於1時就表示負數。比如,在8位機中,規定每個位元組的最高位為符號位。那麼,+8就是00001000,而-8則是10001000。
但是,隨便找一本《計算機原理》,都會告訴你,實際上,計算機內部採用補碼(two's complement)表示負數。
什麼是補碼?
它是一種數值的轉換方法,要分二步完成:
第一步,每乙個二進位制位都取相反值,0變成1,1變成0。比如,00001000的相反值就是11110111。
第二步,將上一步得到的值加1。11110111就變成11111000。
所以,00001000的補碼就是11111000。也就是說,-8在計算機(8位機)中就是用11111000表示。
不知道你怎麼看,反正我覺得很奇怪,為什麼要採用這麼麻煩的方式表示負數,更直覺的方式難道不好嗎?
昨天,我在一本書裡又看到了這個問題,然後就花了一點時間到網上找資料,現在總算徹底搞明白了。
補碼的好處
首先,要明確一點。計算機內部用什麼方式表示負數,其實是無所謂的。只要能夠保持一一對應的關係,就可以用任意方式表示負數。所以,既然可以任意選擇,那麼理應選擇一種最方便的方式。
補碼就是最方便的方式。它的便利體現在,所有的加法運算可以使用同一種電路完成。
還是以-8作為例子。
假定有兩種表示方法。一種是直覺表示法,即10001000;另一種是補碼表示法,即11111000。請問哪一種表示法在加法運算中更方便?
隨便寫乙個計算式,16 + (-8) = ?
16的二進位制表示是 00010000,所以用直覺表示法,加法就要寫成:
00010000
+10001000
---------
10011000
可以看到,如果按照正常的加法規則,就會得到10011000的結果,轉成十進位制就是-24。顯然,這是錯誤的答案。也就是說,在這種情況下,正常的加法規則不適用於正數與負數的加法,因此必須制定兩套運算規則,一套用於正數加正數,還有一套用於正數加負數。從電路上說,就是必須為加法運算做兩種電路。
現在,再來看補碼表示法。
00010000
+11111000
---------
100001000
可以看到,按照正常的加法規則,得到的結果是100001000。注意,這是乙個9位的二進位制數。我們已經假定這是一台8位機,因此最高的第9位是乙個溢位位,會被自動捨去。所以,結果就變成了00001000,轉成十進位制正好是8,也就是16 + (-8) 的正確答案。這說明了,補碼表示法可以將加法運算規則,擴充套件到整個整數集,從而用一套電路就可以實現全部整數的加法。
補碼的本質
在回答補碼為什麼能正確實現加法運算之前,我們先看看它的本質,也就是那兩個步驟的轉換方法是怎麼來的。
要將正數轉成對應的負數,其實只要用0減去這個數就可以了。比如,-8其實就是0-8。
已知8的二進位制是00001000,-8就可以用下面的式子求出:
00000000
-00001000
---------
因為00000000(被減數)小於0000100(減數),所以不夠減。請回憶一下小學算術,如果被減數的某一位小於減數,我們怎麼辦?很簡單,問上一位借1就可以了。
100000000
-00001000
---------
11111000
進一步觀察,可以發現100000000 = 11111111 + 1,所以上面的式子可以拆成兩個:
11111111
-00001000
---------
11110111
+00000001
---------
11111000
補碼的兩個轉換步驟就是這麼來的。
為什麼正數加法適用於補碼?
實際上,我們要證明的是,x-y或x+(-y)可以用x加上y的補碼完成。
y的補碼等於(11111111-y)+1。所以,x加上y的補碼,就等於:
x + (11111111-y) + 1
我們假定這個算式的結果等於z,即 z = x + (11111111-y) + 1
接下來,分成兩種情況討論。
第一種情況,如果x小於y,那麼z是乙個負數。這時,我們就對z採用補碼的逆運算,求出它對應的正數絕對值,再在前面加上負號就行了。所以,
z = -[11111111-(z-1)] = -[11111111-(x + (11111111-y) + 1-1)] = x - y
第二種情況,如果x大於y,這意味著z肯定大於11111111,但是我們規定了這是8位機,最高的第9位是溢位位,必須被捨去,這相當於減去100000000。所以,
z = z - 100000000 = x + (11111111-y) + 1 - 100000000 = x - y
這就證明了,在正常的加法規則下,可以利用補碼得到正數與負數相加的正確結果。換言之,計算機只要部署加法電路和補碼電路,就可以完成所有整數的加法。
(完)z = x + (11111111-y) + 1式子可以寫為z = x - y +100000000,這在硬體上可以理解為兩部分電路來實現,第一部分是前面的x - y(這裡姑且不管計算的結果是正還是負),第二部分是x - y計算的結果再和100000000相加,最終得到計算的結果z, 而在8位的計算機上100000000是不能出現的,其實這時100000000就相當於00000000(捨去了最高位),然後我們再看一些計算的過程:
z = x + (11111111 - y) + 1
= x - y + 100000000
= x - y + 00000000
= x - y
證畢。這樣我們就證明了x-y或x+(-y)可以用x加上y的2的補碼完成,而不必分兩種情況來證明。
關於二進位制補碼
問乙個基本的問題。負數在計算機中如何表示?舉例來說,8在計算機中表示為二進位制的1000,那麼 8怎麼表示呢?很容易想到,可以將乙個二進位制位 bit 專門規定為符號位,它等於0時就表示正數,等於1時就表示負數。比如,在8位機中,規定每個位元組的最高位為符號位。那麼,8就是00001000,而 8則...
關於二進位制補碼
負數在計算機中如何表示?舉例來說,8在計算機中表示為二進位制的1000,那麼 8怎麼表示呢?很容易想到,可以將乙個二進位制位 bit 專門規定為符號位,它等於0時就表示正數,等於1時就表示負數。比如,在8位機中,規定每個位元組的最高位為符號位。那麼,8就是00001000,而 8則是10001000...
關於二進位制補碼
問乙個主要的問題。負數在計算機中怎樣表示?舉例來說,8在計算機中表示為二進位制的1000,那麼 8怎麼表示呢?非常easy想到,能夠將乙個二進位制位 bit 專門規定為符號位,它等於0時就表示正數,等於1時就表示負數。比方,在8位機中,規定每乙個位元組的最高位為符號位。那麼,8就是00001000,...