路漫漫其修遠兮
環境:python + tensorflow
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# pylint: disable=unused-import
import gzip
import os
import tempfile
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
# pylint: enable=unused-import
2. softmax模型訓練
import input_data
import tensorflow as tf
#建立互動會話類
sess = tf.interactivesession()
x = tf.placeholder("float", shape = [none, 784]) #輸入資料,28*28 = 784
y_ = tf.placeholder("float", shape = [none, 10]) #標籤資料,表示類別 0~9
w = tf.variable(tf.zeros([784,10])) #weight
b = tf.variable(tf.zeros([10])) #bias
sess.run(tf.global_variables_initializer()) #初始化變數
#**模型 softmax
y = tf.nn.softmax(tf.matmul(x,w) + b)
#損失函式 交叉熵
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#梯度下降
train_step = tf.train.gradientdescentoptimizer(0.01).minimize(cross_entropy)
#訓練1000次
for _ in range(1000):
batch = mnist_data.train.next_batch(50)
train_step.run(feed_dict = )
#評估模型
correct_prediction = tf.equal(tf.arg_max(y,1), tf.arg_max(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(accuracy.eval(feed_dict = ))
sess.close()
手牽手 一步兩步三步四步望著天 看星星 一顆兩顆三顆四顆連成線 MNIST機器學習入門
使用mnist 資料集,用softmax回歸 標籤 使用交叉熵損失函式計算損失值 使用梯度下降法優化引數 coding utf 8 import tensorflow as tf import tensorflow.examples.tutorials.mnist.input data as inp...
MNIST機器學習入門 程式與操作
1.ubuntu terminal 2.建立乙個code目錄 mkdir tensorflow code 3.進入tensorflow code cd tensorflow code 4.建立tensorflow mnist 檔案test mnist.py touch test mnist.py 5...
TensorFlow入門 MNIST深入
1 load mnist data 2import tensorflow.examples.tutorials.mnist.input data as input data 3 mnist input data.read data sets mnist data one hot true 45 st...