Dijkstra 暢通工程續

2021-08-09 04:27:48 字數 1147 閱讀 5916

1.定義概覽(參考

dijkstra(迪傑斯特拉)演算法是典型的單源最短路徑演算法,用於計算乙個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴充套件,直到擴充套件到終點為止。dijkstra演算法是很有代表性的最短路徑演算法,在很多專業課程中都作為基本內容有詳細的介紹,如資料結構,圖論,運籌學等等。注意該演算法要求圖中不存在負權邊。

問題描述:在無向圖 g=(v,e) 中,假設每條邊 e[i] 的長度為 w[i],找到由頂點 v0 到其餘各點的最短路徑。(單源最短路徑)

2.演算法描述

1)演算法思想:設g=(v,e)是乙個帶權有向圖,把圖中頂點集合v分成兩組,第一組為已求出最短路徑的頂點集合(用s表示,初始時s中只有乙個源點,以後每求得一條最短路徑 , 就將加入到集合s中,直到全部頂點都加入到s中,演算法就結束了),第二組為其餘未確定最短路徑的頂點集合(用u表示),按最短路徑長度的遞增次序依次把第二組的頂點加入s中。在加入的過程中,總保持從源點v到s中各頂點的最短路徑長度不大於從源點v到u中任何頂點的最短路徑長度。此外,每個頂點對應乙個距離,s中的頂點的距離就是從v到此頂點的最短路徑長度,u中的頂點的距離,是從v到此頂點只包括s中的頂點為中間頂點的當前最短路徑長度。

2)演算法步驟:

a.初始時,s只包含源點,即s=,v的距離為0。u包含除v外的其他頂點,即:u=,若v與u中頂點u有邊,則正常有權值,若u不是v的出邊鄰接點,則權值為∞。

b.從u中選取乙個距離v最小的頂點k,把k,加入s中(該選定的距離就是v到k的最短路徑長度)。

c.以k為新考慮的中間點,修改u中各頂點的距離;若從源點v到頂點u的距離(經過頂點k)比原來距離(不經過頂點k)短,則修改頂點u的距離值,修改後的距離值的頂點k的距離加上邊上的權。

d.重複步驟b和c直到所有頂點都包含在s中。

模板

void dijkstra(int s)

d[s]=0;

while(1)

//可能兩條路修的是一樣的 ,但距離不一樣,選擇最小的(死在這了)

scanf("%d%d",&start,&e);

dijkstra();

if(d[e]==inf)

printf("-1\n");

else

printf("%d\n",d[e]);

} return 0;

}

暢通工程續(Dijkstra)

problem description 某省自從實行了很多年的暢通工程計畫後,終於修建了很多路。不過路多了也不好,每次要從乙個城鎮到另乙個城鎮時,都有許多種道路方案可以選擇,而某些方案要比另一些方案行走的距離要短很多。這讓行人很困擾。現在,已知起點和終點,請你計算出要從起點到終點,最短需要行走多少距...

Dijkstra 暢通工程續

題目 某省自從實行了很多年的暢通工程計畫後,終於修建了很多路。不過路多了也不好,每次要從乙個城鎮到另乙個城鎮時,都有許多種道路方案可以選擇,而某些方案要比另一些方案行走的距離要短很多。這讓行人很困擾。現在,已知起點和終點,請你計算出要從起點到終點,最短需要行走多少距離。input 本題目包含多組資料...

暢通工程續(Dijkstra演算法)

推薦一篇很好的文章 如夜 yanbaoc。我在這裡就只是談談自己對dijkstra演算法的理解了。首先,我們需要知道dijkstra演算法是解決哪類問題的 對於單源點出發,到達某一點的最短距離。那適用於什麼條件呢?權重值為正的無向,有向連通圖。可以解負權的嗎?這個問題先放放,我們後面再講 我們先來看...