#最近鄰
import numpy as np
from numpy import linalg as la
from sklearn.neighbors import nearestneighbors
m=np.array(["你吃飯了嗎","今天的花兒很好看","簡直不能更完美","你喜歡吃辣椒嗎","天氣很完美","這個花兒長的像辣椒"])
x = np.array([[-1,-1],
[-2,-1],
[-3,-2],
[1,1],
[2,1],
[3,2]
])
nbrs = nearestneighbors(n_neighbors=3, algorithm="ball_tree").fit(x)
#返回距離每個點k個最近的點和距離指數,indices可以理解為表示點的下標,distances為距離
distances, indices = nbrs.kneighbors(x)
print(indices[4])
for i in indices[4]:
print(m[i])
快速最近鄰匹配
這是乙個完整的利用suft快速近鄰匹配的程式 include include include include include include include include include include include using namespace std using namespace cv ...
Tensorflow實現最近鄰
import tensorflow as tf import numpy as np 匯入mnist資料 from tensorflow.examples.tutorials.mnist import input data mnist input data.read data sets data m...
K最近鄰演算法
參考 所謂k最近鄰,就是k個最近的鄰居的意思,說的是每個樣本都可以用它最接近的k個鄰居來代表。cover和hart在1968年提出了最初的鄰近演算法。knn是一種分類 classification 演算法,它輸入基於例項的學習 instance based learning 屬於懶惰學習 lazy ...