caffe設定正則化項

2021-07-29 14:25:14 字數 344 閱讀 8370

caffe提供了兩種正則化,l1和l2,其中l2正則化項是預設存在的,在caffe.proto中可以找到,如下

// regularization types supported: l1 and l2

// controlled by weight_decay

optional string regularization_type = 29 [default = "l2"];

說明caffe預設使用的是l2正則化

regularization_type: "l1"

還有個點是 weight_decay 是乘在正則化向前面,控制正則化項在損失函式中所佔權重的。嗯,剛剛的收穫差不多就這些

caffe設定正則化項

caffe提供了兩種正則化,l1和l2,其中l2正則化項是預設存在的,在caffe.proto中可以找到,如下 regularization types supported l1 and l2 controlled by weight decay optional string regulariza...

Tensorflow 中新增正則化項

為防止網路過擬合,在損失函式上增加乙個網路引數的正則化項是乙個常用方法,下面介紹如何在tensorflow中新增正則化項。tensorflow中對引數使用正則項分為兩步 下面詳細介紹 step1 建立乙個正則化方法 regularizer l1 tf.contrib.layers.l1 regula...

深度學習(九)正則化懲罰項

在機器學習特別是深度學習中,我們通過大量資料集希望訓練得到精確 泛化能力強的模型,對於生活中的物件越簡潔 抽象就越容易描述和分別,相反,物件越具體 複雜 明顯就越不容易描述區分,描述區分的泛化能力就越不好。比如,描述乙個物體是 方的 那我們會想到大概這個物體的投影應該是四條邊,兩兩平行且垂直,描述此...