題目描述
為了準備乙個獨特的頒獎典禮,組織者在會場的一片矩形區域(可看做是平面直角座標系的第一象限)鋪上一些矩形地毯,一共有n張地毯,編號從 1 到n。現在將這些地毯按照編號從小到大的順序平行於座標軸先後鋪設,後鋪的地毯覆蓋在前面已經鋪好的地毯之上。分析由於資料規模,不能讓區域上的每個點來記錄最後覆蓋自己的地毯編號。地毯鋪設完成後,組織者想知道覆蓋地面某個點的最上面的那張地毯的編號。注意:在矩形地毯邊界和四個頂點上的點也算被地毯覆蓋。
輸入 輸入共 n+2行。
第一行有乙個整數n,表示總共有 n張地毯。
接下來的 n行中,第 i+1行表示編號 i的地毯的資訊,包含四個正整數 a,b,g,k,每兩個整數之間用乙個空格隔開,分別表示鋪設地毯的左下角的座標(a,b)以及地毯在 x軸和 y軸方向的長度。
第 n+2 行包含兩個正整數 x 和 y,表示所求的地面的點的座標(x,y)。
0≤n≤10,000,0≤a, b, g, k≤100,000
輸出 輸出共 1 行,乙個整數,表示所求的地毯的編號;若此處沒有被地毯覆蓋則輸出-1。
樣例輸入
3 1 0 2 3
0 2 3 3
2 1 3 3
2 2
樣例輸出
3
可以換個角度,把地毯看作物件,每塊地毯由編號和覆蓋範圍構成。
然後從最後一塊地毯開始,判斷座標點是否在當前地毯上。
**[c++]
#include
#include
#include
#include
#include
using namespace std;
const int maxn = 10005;
int main()
intqx,qy;
scanf("%d
%d",&qx,&qy);
bool flag=false;
for(int i=n; i>=1; i--)
}if(!flag)
printf("-1\n");
}
NOIP2011 模擬 鋪地毯
題目描述 description 為了準備乙個獨特的頒獎典禮,組織者在會場的一片矩形區域 可看做是平面直角座標系的第一象限 鋪上一些矩形地毯。一共有n 張地毯,編號從1 到n。現在將這些地毯按照編號從小到大的順序平行於座標軸先後鋪設,後鋪的地毯覆蓋在前面已經鋪好的地毯之上。地毯鋪設完成後,組織者想知...
模擬 NOIP2011提高組 鋪地毯
為了準備乙個獨特的頒獎典禮,組織者在會場的一片矩形區域 可看做是平面直角座標 系的第一象限 鋪上一些矩形地毯。一共有n 張地毯,編號從1 到n。現在將這些地毯按照 編號從小到大的順序平行於座標軸先後鋪設,後鋪的地毯覆蓋在前面已經鋪好的地毯之上。地毯鋪設完成後,組織者想知道覆蓋地面某個點的最上面的那張...
noip2011 鋪地毯 (列舉)
p1736鋪地毯 accepted 標籤 搜尋 列舉 noip提高組2011 為了準備乙個獨特的頒獎典禮,組織者在會場的一片矩形區域 可看做是平面直角座標系的第一象限 鋪上一些矩形地毯。一共有n張地毯,編號從1到n。現在將這些地毯按照編號從小到大的順序平行於座標軸先後鋪設,後鋪的地毯覆蓋在前面已經鋪...