從python菜鳥到python kaggler的旅程(譯註:kaggle是乙個資料建模和資料分析競賽平台)
假如你想成為乙個資料科學家,或者已經是資料科學家的你想擴充套件你的技能,那麼你已經來對地方了。本文的目的就是給資料分析方面的python新手提供乙個完整的學習路徑。該路徑提供了你需要學習的利用python進行資料分析的所有步驟的完整概述。如果你已經有一些相關的背景知識,或者你不需要路徑中的所有內容,你可以隨意調整你自己的學習路徑,並且讓大家知道你是如何調整的。
步驟0:熱身
開始學習旅程之前,先回答第乙個問題:為什麼使用python?或者,python如何發揮作用?
**datarobot創始人jeremy在pycon ukraine 2014上的30分鐘演講,來了解python是多麼的有用。
步驟1:設定你的機器環境
如果你在安裝過程中遇到任何問題,你可以在這裡找到不同作業系統下更詳細的安裝說明。
步驟2:學習python語言的基礎知識
你應該先去了解python語言的基礎知識、庫和資料結構。codecademy上的python課程是你最好的選擇之一。完成這個課程後,你就能輕鬆的利用python寫一些小指令碼,同時也能理解python中的類和物件。
步驟3:學習python語言中的正規表示式
你會經常用到正規表示式來進行資料清理,尤其是當你處理文字資料的時候。學習正規表示式的最好方法是參加谷歌的python課程,它會讓你能更容易的使用正規表示式。
任務:做關於小孩名字的正規表示式練習。
如果你還需要更多的練習,你可以參與這個文字清理的教程。資料預處理中涉及到的各個處理步驟對你來說都會是不小的挑戰。
步驟4:學習python中的科學庫—numpy, scipy, matplotlib以及pandas
從這步開始,學習旅程將要變得有趣了。下邊是對各個庫的簡介,你可以進行一些常用的操作:
•根據numpy教程進行完整的練習,特別要練習陣列arrays。這將會為下邊的學習旅程打好基礎。
•接下來學習scipy教程。看完scipy介紹和基礎知識後,你可以根據自己的需要學習剩餘的內容。
•這裡並不需要學習matplotlib教程。對於我們這裡的需求來說,matplotlib的內容過於廣泛。取而代之的是你可以學習這個筆記中前68行的內容。
•最後學習pandas。pandas為python提供dataframe功能(類似於r)。這也是你應該花更多的時間練習的地方。pandas會成為所有中等規模資料分析的最有效的工具。作為開始,你可以先看乙個關於pandas的10分鐘簡短介紹,然後學習乙個更詳細的pandas教程。
您還可以學習兩篇部落格exploratory data analysis with pandas和data munging with pandas中的內容。
額外資源:
•如果你需要一本關於pandas和numpy的書,建議wes mckinney寫的「python for data analysis」。
•在pandas的文件中,也有很多pandas教程,你可以在這裡檢視。
任務:嘗試解決哈佛cs109課程的這個任務。
步驟5:有用的資料視覺化
參加cs109的這個課程。你可以跳過前邊的2分鐘,但之後的內容都是乾貨。你可以根據這個任務來完成課程的學習。
步驟6:學習scikit-learn庫和機器學習的內容
現在,我們要開始學習整個過程的實質部分了。scikit-learn是機器學習領域最有用的python庫。這裡是該庫的簡要概述。完成哈佛cs109課程的課程10到課程18,這些課程包含了機器學習的概述,同時介紹了像回歸、決策樹、整體模型等監督演算法以及聚類等非監督演算法。你可以根據各個課程的任務來完成相應的課程。
額外資源:
任務:嘗試kaggle上的這個挑戰
步驟7:練習,練習,再練習
恭喜你,你已經完成了整個學習旅程。
你現在已經學會了你需要的所有技能。現在就是如何練習的問題了,還有比通過在kaggle上和資料科學家們進行競賽來練習更好的方式嗎?深入乙個當前kaggle上正在進行的比賽,嘗試使用你已經學過的所有知識來完成這個比賽。
步驟8:深度學習
現在你已經學習了大部分的機器學習技術,是時候關注一下深度學習了。很可能你已經知道什麼是深度學習,但是如果你仍然需要乙個簡短的介紹,可以看這裡。
我自己也是深度學習的新手,所以請有選擇性的採納下邊的一些建議。deeplearning.net上有深度學習方面最全面的資源,在這裡你會發現所有你想要的東西—講座、資料集、挑戰、教程等。你也可以嘗試參加geoff hinton的課程,來了解神經網路的基本知識。
英文出處:www.analyticsvidhya.com
文章出處:
資料科學的完整學習路徑 Python版
假如你想成為乙個資料科學家,或者已經是資料科學家的你想擴充套件你的技能,那麼你已經來對地方了。本文的目的就是給資料分析方面的python新手提供乙個完整的學習路徑。該路徑提供了你需要學習的利用python進行資料分析的所有步驟的完整概述。如果你已經有一些相關的背景知識,或者你不需要路徑中的所有內容,...
資料科學的完整學習路徑(Python版)
笑虎 翻譯,英文出處 analyticsvidhya。歡迎加入 翻譯組。從python菜鳥到python kaggler的旅程 譯註 kaggle是乙個資料建模和資料分析競賽平台 假如你想成為乙個資料科學家,或者已經是資料科學家的你想擴充套件你的技能,那麼你已經來對地方了。本文的目的就是給資料分析方...
tensorflow 科學學習路徑
我們接觸到的 tensorflow 學習資料,要麼屬於零星介紹,要麼從頭到尾平鋪介紹。稍微有開發經驗的人知道,這是一種低效的資料。大家都知道從專案入手學習一門語言是最快的。但是,如何做?對於乙個入門者,對於專案是什麼尚且不能完全認識,更別說在做專案的基礎上學習一門語言。在做專案的過程中學習一門語言,...