題目背景
人工神經網路(artificial neural network)是一種新興的具有自我學習能力的計算系統,在模式識別、函式逼近及貸款風險評估等諸多領域有廣泛的應用。對神經網路的研究一直是當今的熱門方向,蘭蘭同學在自學了一本神經網路的入門書籍後,提出了乙個簡化模型,他希望你能幫助他用程式檢驗這個神經網路模型的實用性。
題目描述
在蘭蘭的模型中,神經網路就是一張有向圖,圖中的節點稱為神經元,而且兩個神經元之間至多有一條邊相連,下圖是乙個神經元的例子:
神經元〔編號為1)
圖中,x1―x3是資訊輸入渠道,y1-y2是資訊輸出渠道,c1表示神經元目前的狀態,ui是閾值,可視為神經元的乙個內在引數。
神經元按一定的順序排列,構成整個神經網路。在蘭蘭的模型之中,神經網路中的神經無分為幾層;稱為輸入層、輸出層,和若干個中間層。每層神經元只向下一層的神經元輸出資訊,只從上一層神經元接受資訊。下圖是乙個簡單的三層神經網路的例子。
蘭蘭規定,ci服從公式:(其中n是網路中所有神經元的數目)
公式中的wji(可能為負值)表示連線j號神經元和 i號神經元的邊的權值。當 ci大於0時,該神經元處於興奮狀態,否則就處於平靜狀態。當神經元處於興奮狀態時,下一秒它會向其他神經元傳送訊號,訊號的強度為ci。
如此.在輸入層神經元被激發之後,整個網路系統就在資訊傳輸的推動下進行運作。現在,給定乙個神經網路,及當前輸入層神經元的狀態(ci),要求你的程式運算出最後網路輸出層的狀態。
輸入輸出格式
輸入格式:
輸入檔案第一行是兩個整數n(1≤n≤100)和p。接下來n行,每行兩個整數,第i+1行是神經元i最初狀態和其閾值(ui),非輸入層的神經元開始時狀態必然為0。再下面p行,每行由兩個整數i,j及乙個整數wij,表示連線神經元i、j的邊權值為wij。
輸出格式:
輸出檔案包含若干行,每行有兩個整數,分別對應乙個神經元的編號,及其最後的狀態,兩個整數間以空格分隔。僅輸出最後狀態大於零的輸出層神經元狀態,並且按照編號由小到大順序輸出!
若輸出層的神經元最後狀態均為 0,則輸出 null。
輸入輸出樣例
輸入樣例#1:
5 6
1 0
1 0
0 1
0 1
0 1
1 3 1
1 4 1
1 5 1
2 3 1
2 4 1
2 5 1
輸出樣例#1:
3 1
4 1
5 1【分析】
細節很多的拓撲排序…
【**】
//noip 2003 神經網路
#include
#include
#include
#include
#include
#include
#include
#define mp make_pair
#define m(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using
namespace
std;
const
int mxn=105;
queue
q;vector
f[mxn],w[mxn];
int c[mxn],u[mxn],du[mxn];
int n,m,tot;
int main()
fo(i,1,m)
while(!q.empty())
}bool flag=1;
fo(i,1,n)
if(f[i].size()==0 && c[i]>0)
printf("%d %d\n",i,c[i]),flag=0;
if(flag) printf("null\n");
return
0;}
NOIP2003 神經網路
神經網路 人工神經網路 artificial neural network 是一種新興的具有自我學習能力的計算系統,在模式識別 函式逼近及貸款風險評估等諸多領域有廣泛的應用。對神經網路的研究一直是當今的熱門方向,蘭蘭同學在自學了一本神經網路的入門書籍後,提出了乙個簡化模型,他希望你能幫助他用程式檢驗...
NOIP提高組2003 神經網路
題目 題目背景 人工神經網路 artificial neural network 是一種新興的具有自我學習能力的計算系統,在模式識別 函式逼近及貸款風險評估等諸多領域有廣泛的應用。對神經網路的研究一直是當今的熱門方向,蘭蘭同學在自學了一本神經網路的入門書籍後,提出了乙個簡化模型,他希望你能幫助他用程...
NOIP2003神經網路 BFS
人工神經網路 artificial neural network 是一種新興的具有自我學習能力的計算系統,在模式識別 函式逼近及貸款風險評估等諸多領域有廣泛的應用。對神經網路的研究一直是當今的熱門方向,蘭蘭同學在自學了一本神經網路的入門書籍後,提出了乙個簡化模型,他希望你能幫助他用程式檢驗這個神經網...