如何計算程式時間複雜度(實戰篇)

2021-07-15 09:24:10 字數 1921 閱讀 8020

概念:

1.乙個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。

乙個演算法中的語句執行次數稱為語句頻度或時間頻度。記為t(n)。

2.一般情況下,演算法的基本操作重複執行的次數是模組n的某乙個函式f(n),因此,演算法的時間複雜度記做:t(n)=o(f(n))。隨著模組n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間複雜度越低,演算法的效率越高。

計算步驟:

⑴ 找出演算法中的基本語句;

演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。

⑵ 計算基本語句的執行次數的數量級;

只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函式中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的係數。這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。

⑶ 用大ο記號表示演算法的時間效能。

將基本語句執行次數的數量級放入大ο記號中。

再找出t(n)的同數量級(它的同數量級有以下:1,log2n ,n ,

nlog2n ,n的平方,n的三次方,2的n次方,n!),找出後

f(n)=該數量級,若t(n)/f(n)求極限可得到一常數c,則時間復

雜度t(n)=o(f(n))。

時間複雜度是總運算次數表示式中受n的變化影響最大的那一項(不含係數)

比如:一般總運算次數表示式類似於這樣:

a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f

a ! =0時,時間複雜度就是o(2^n);

a=0,b<>0 =>o(n^3);

a,b=0,c<>0 =>o(n^2)依此類推

eg:

(1) for(i=1;i<=n;i++) //迴圈了n*n次,當然是o(n^2)

for(j=1;j<=n;j++)

s++;

(2) for(i=1;i<=n;i++)//迴圈了(n+n-1+n-2+…+1)≈(n^2)/2,因為時間複雜度是不考慮係數的,所以也是o(n^2)

for(j=i;j<=n;j++)

s++;

(3) for(i=1;i<=n;i++)//迴圈了(1+2+3+…+n)≈(n^2)/2,當然也是o(n^2)

for(j=1;j<=i;j++)

s++;

(4) i=1;k=0;

while(i<=n-1)//迴圈了

n-1≈n次,所以是o(n)

(5) for(i=1;i<=n;i++)

for(j=1;j<=i;j++)

for(k=1;k<=j;k++)

x=x+1;

// 迴圈了(1^2+2^2+3^2+…+n^2)=n(n+1)(2n+1)/6(這個公式要記住哦)≈(n^3)/3,不考慮係數,自然是o(n^3)

另外,在時間複雜度中,log(2,n)(以2為底)與lg(n)(以10為底)是等價的,因為對數換底公式:

log(a,b)=log(c,b)/log(c,a)

所以,log(2,n)=log(2,10)*lg(n),忽略掉係數,二者當然是等價的

如果演算法中包含巢狀的迴圈,則基本語句通常是最內層的迴圈體,如果演算法中包含並列的迴圈,則將並列迴圈的時間複雜度相加。例如:

for (i=1; i<=n; i++)

x++;

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

x++;

第乙個for迴圈的時間複雜度為ο(n),第二個for迴圈的時間複雜度為ο(n2),則整個演算法的時間複雜度為ο(n+n2)=ο(n2)。

常見的演算法時間複雜度由小到大依次為:

ο(1)<ο(log2n)<ο(n)<ο(nlog2n)<ο(n2)<ο(n3)<…<ο(2n)<ο(n!)

如何計算程式的時間複雜度

定義 如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t n 它是n的某一函式t n 稱為這一演算法的 時間複雜性 當輸入量n逐漸加大時,時間複雜性的極限情形稱為演算法的 漸近時間複雜性 我們常用大o表示法表示時間複雜性,注意它是某乙個演算法的時間複雜性。大o表示只是說有上界,由定義如果...

如何計算時間複雜度

求解演算法的時間複雜度的具體步驟是 找出演算法中的基本語句 演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。計算基本語句的執行次數的數量級 只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函式中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的係數。這樣能...

如何計算時間複雜度

定義 如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t n 它是n的某一函式 t n 稱為這一演算法的 時間複雜性 當輸入量n逐漸加大時,時間複雜性的極限情形稱為演算法的 漸近時間複雜性 我們常用大o表示法表示時間複雜性,注意它是某乙個演算法的時間複雜性。大o表示只是說有上界,由定義如...