自適應濾波存在於訊號處理、控制、影象處理等許多不同領域,它是一種智慧型更有針對性的濾波方法,通常用於去噪。
圖中x(j)表示 j 時刻的輸入訊號值,y(j)表示 j 時刻的輸出訊號值,d(j)表示 j 的參考訊號值或所期望響應訊號值,誤差訊號e(j)為d(j)與y(j)之差。自適應數字濾波器的濾波引數受誤差訊號e(j)的控制,根據e(j)的值而自動調整,使之適合下一時刻的輸入x(j+1),以便使輸出y(j+1)接近於所期望的參考訊號d(j+1)。
自適應濾波器可以分為線性自適應濾波器和非線性自適應濾波器。非線性自適應濾波器包括voetlrra濾波器和基於神經網路的自適應濾波器。非線性自適應濾波器具有更強的訊號處理能力。但是,由於非線性自適應濾波器的計算較複雜,實際用得最多的仍然是線性自適應濾波器。
自適應濾波演算法廣泛應用於系統辨識、回波消除、自適應譜線增強、自適應通道均衡、語音線性**、自適應天線陣等諸多領域中。總之,尋求收斂速度快,計算複雜性低,數值穩定性好的自適應濾波演算法是研究人員不斷努力追求的目標。雖然線性自適應濾波器和相應的演算法具有結構簡單、計算複雜性低的優點而廣泛應用於實際,但由於對訊號的處理能力有限而在應用中受到限制。由於非線性自適應濾波器,如voletrra濾波器和基於神經網路的自適應濾波器,具有更強的訊號處理能力,已成為自適應訊號處理中的乙個研究熱點。其中較典型的幾種演算法包括:
lms自適應濾波演算法
rls自適應濾波演算法
變換域自適應濾波演算法
仿射投影演算法
共扼梯度演算法
基於子帶分解的自適應濾波演算法
基於qr分解的自適應濾波演算法
解:matlab程式設計實現
由於lms
演算法只是用以前各時刻的抽頭參量等作該時刻資料塊估計時的平方誤差均方最小的準則,而未用現時刻的抽頭參量等來對以往各時刻的資料塊作重新估計後的累計平方誤差最小的準則,所以
lms演算法對非平穩訊號的適應性差。
rls演算法的基本思想是力圖使在每個時刻對所有已輸入訊號而言重估的平方誤差的加權和最小,這使得
rls演算法對非平穩訊號的適應性要好。與
lms演算法相比,
rls演算法採用時間平均,因此,所得出的最優濾波器依賴於用於計算平均值的樣本數,而
lms演算法是基於集平均而設計的,因此穩定環境下
lms演算法在不同計算條件下的結果是一致的。在效能方面,
rls的收斂速率比
lms要快得多,因此,
rls在收斂速率方面有很大優勢。
rls演算法在迭代過程中產生的誤差明顯小於
lms演算法。由此可見,
rls在提取訊號時,收斂速度快,估計精度高而且穩定性好,可以明顯抑制振動加速度收斂過程,故對非平穩訊號的適應性強,而
lms演算法收斂速度慢,估計精度低而且權係數估計值因瞬時梯度估計圍繞精確值波動較大,權雜訊大,不穩定。
自適應中值濾波
演算法 自適應中值濾波 layer a a1 zmed zmin a2 zmax zmed if a1 0 and a2 0,goto layer b else enlarge sxy,goto layer a if sxy exceeds the boundary,out zxy layer b ...
RAMF自適應中值濾波
clear all 清除所有變數 close all 關閉所有開啟的檔案 clc 清除命令列內容 img mat2gray rgb2gray imread lena.jpg 讀取檔案 m n size img img imnoise img,salt pepper 0.25 加入椒鹽雜訊 subpl...
自適應濾波 矩陣求逆
讀書筆記09 前言 西蒙.赫金的 自適應濾波器原理 第四版第八章 最小二乘法。因為最小二乘涉及到矩陣求逆,因為通常對於秩缺矩陣其逆是不可求的,這就需要借助廣義逆矩陣。而廣義逆矩陣可以借助奇異值分解 svd,singularly valuable decomposition 進行求解。有了這個思路,在...