動態規劃(dynamic programming),簡稱dp。是快速將多階段過程轉化為單階段問題,通過尋找出各階段之間的聯絡,求解出最終答案的思想。
本文主要講解它在計算機演算法中的使用,它是演算法競賽中最常見,也是比較難的一種演算法。
先簡單講述一下一些理論上的概念(簡略看下,有個大概的了解,真正理解需要不斷得思考、分析dp題目)
階段:把所求解問題的過程恰當分成若干個相互聯絡的階段。
狀態:每個階段開始面臨的狀況。
決策:乙個階段的狀態給定以後,從該狀態演變成下乙個階段的某個狀態的一種選擇。
最優化原理
:如果問題的最優解所包含的子問題的解也是最優的,就稱該問題具有最優子結構,即滿足最優化原理。
無後效性
:即某階段狀態一旦確定,就不受這個狀態以後決策的影響。也就是說,某狀態以後的過程不會影響以前的狀態,
只與當前狀態有關。
有重疊子問題
以下內容來自於:
求解的基本步驟
動態規劃所處理的問題是乙個多階段決策問題,一般由初始狀態開始,通過對中間階段決策的選擇,達到結束狀態。
這些決策形成了乙個決策序列,同時確定了完成整個過程的一條活動路線(通常是求最優的活動路線)。
如圖所示。
動態規劃的設計都有著一定的模式,一般要經歷以下幾個步驟。
初始狀態→│決策1│→│決策2│→…→│決策n│→結束狀態
圖1 動態規劃決策過程示意圖
(1)劃分階段:按照問題的時間或空間特徵,把問題分為若干個階段。在劃分階段時,注意劃分後的階段一定要是有序的或者是可排序的,
否則問題就無法求解。
(2)確定狀態和狀態變數:將問題發展到各個階段時所處於的各種客觀情況用不同的狀態表示出來。當然,狀態的選擇要滿足無後效性。
(3)確定決策並寫出狀態轉移方程:因為決策和狀態轉移有著天然的聯絡,狀態轉移就是根據上一階段的狀態和決策來匯出本階段的狀態。
所以如果確定了決策,狀態轉移方程也就可寫出。但事實上常常是反過來做,根據相鄰兩個階段的狀態之間的關係來確定決策方法和狀態轉移方程。
(4)尋找邊界條件:給出的狀態轉移方程是乙個遞推式,需要乙個遞推的終止條件或邊界條件。
一般,只要解決問題的階段、狀態和狀態轉移決策確定了,就可以寫出狀態轉移方程(包括邊界條件)。
實際應用中可以按以下幾個簡化的步驟進行設計:
(1)分析最優解的性質,並刻畫其結構特徵。
(2)遞迴的定義最優解。
(3)以自底向上或自頂向下的記憶化方式(備忘錄法)計算出最優值
(4)根據計算最優值時得到的資訊,構造問題的最優解
演算法實現的說明
動態規劃的主要難點在於理論上的設計,也就是上面4個步驟的確定,一旦設計完成,實現部分就會非常簡單。
使用動態規劃求解問題,最重要的就是確定動態規劃三要素:
(1)問題的階段
(2)每個階段的狀態
(3)從前乙個階段轉化到後乙個階段之間的遞推關係。
動態規劃1
維基百科 動態規劃是一種在數學和 電腦科學 中使用的,用於求解包含 重疊子問題 的最優化 問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於電腦科學和工程領域。比較著名的應用例項有 求解 最短路徑 問題,揹...
動態規劃 1
動態規劃是對最優化問題的一種新的演算法設計方法。由於各種問題的性質不同,確定最優解的條件也互不相同,因而動態規劃的沒計法對不同的問題,有各具特色的表示方式。不存在一種萬能的動態規劃演算法。但是可以通過對若干有代表性的問題的動態規劃演算法進行討論,學會這一設計方法。多階段決策過程最優化問題 動態規劃的...
動態規劃1
首先,動態規劃的最基本要求在於無後效性 即結果態之和之前某態有關,並且對於該之前態我們並不關心它到底是怎麼來的 和n到n 1的跳躍一樣,它也是依賴轉移方程得來。比如0 1揹包 我們只要永遠依賴dp i j max dp i 1 j,dp i 1 j wi vi 這個轉移方程即可,並不在乎它具體細節。...