二叉樹前序 中序 後序遍歷相互求法

2021-06-28 05:28:39 字數 1719 閱讀 9746

首先,我們看看前序、中序、後序遍歷的特性: 

前序遍歷: 

1.訪問根節點 

2.前序遍歷左子樹 

3.前序遍歷右子樹 

中序遍歷: 

1.中序遍歷左子樹 

2.訪問根節點 

3.中序遍歷右子樹 

後序遍歷: 

1.後序遍歷左子樹 

2.後序遍歷右子樹 

3.訪問根節點

一、已知前序、中序遍歷,求後序遍歷例:

前序遍歷:         gdafemhz

中序遍歷:         adefghmz

畫樹求法:

第一步,根據前序遍歷的特點,我們知道根結點為g

第二步,觀察中序遍歷adefghmz。其中root節點g左側的adef必然是root的左子樹,g右側的hmz必然是root的右子樹。

第三步,觀察左子樹adef,左子樹的中的根節點必然是大樹的root的leftchild。在前序遍歷中,大樹的root的leftchild位於root之後,所以左子樹的根節點為d。

第四步,同樣的道理,root的右子樹節點hmz中的根節點也可以通過前序遍歷求得。在前序遍歷中,一定是先把root和root的所有左子樹節點遍歷完之後才會遍歷右子樹,並且遍歷的左子樹的第乙個節點就是左子樹的根節點。同理,遍歷的右子樹的第乙個節點就是右子樹的根節點。

第五步,觀察發現,上面的過程是遞迴的。先找到當前樹的根節點,然後劃分為左子樹,右子樹,然後進入左子樹重複上面的過程,然後進入右子樹重複上面的過程。最後就可以還原一棵樹了。該步遞迴的過程可以簡潔表達如下:

1 確定根,確定左子樹,確定右子樹。

2 在左子樹中遞迴。

3 在右子樹中遞迴。

4 列印當前根。

那麼,我們可以畫出這個二叉樹的形狀:

那麼,根據後序的遍歷規則,我們可以知道,後序遍歷順序為:aefdhzmg

二、已知中序和後序遍歷,求前序遍歷

依然是上面的題,這次我們只給出中序和後序遍歷:

中序遍歷:       adefghmz

後序遍歷:       aefdhzmg

畫樹求法:

第一步,根據後序遍歷的特點,我們知道後序遍歷最後乙個結點即為根結點,即根結點為g。

第二步,觀察中序遍歷adefghmz。其中root節點g左側的adef必然是root的左子樹,g右側的hmz必然是root的右子樹。

第三步,觀察左子樹adef,左子樹的中的根節點必然是大樹的root的leftchild。在前序遍歷中,大樹的root的leftchild位於root之後,所以左子樹的根節點為d。

第四步,同樣的道理,root的右子樹節點hmz中的根節點也可以通過前序遍歷求得。在前後序遍歷中,一定是先把root和root的所有左子樹節點遍歷完之後才會遍歷右子樹,並且遍歷的左子樹的第乙個節點就是左子樹的根節點。同理,遍歷的右子樹的第乙個節點就是右子樹的根節點。

第五步,觀察發現,上面的過程是遞迴的。先找到當前樹的根節點,然後劃分為左子樹,右子樹,然後進入左子樹重複上面的過程,然後進入右子樹重複上面的過程。最後就可以還原一棵樹了。該步遞迴的過程可以簡潔表達如下:

1 確定根,確定左子樹,確定右子樹。

2 在左子樹中遞迴。

3 在右子樹中遞迴。

4 列印當前根。

這樣,我們就可以畫出二叉樹的形狀,如上圖所示,這裡就不再贅述。

那麼,前序遍歷:         gdafemhz

二叉樹前序 中序 後序遍歷相互求法

今天來總結下二叉樹前序 中序 後序遍歷相互求法,即如果知道兩個的遍歷,如何求第三種遍歷方法,比較笨的方法是畫出來二叉樹,然後根據各種遍歷不同的特性來求,也可以程式設計求出,下面我們分別說明。首先,我們看看前序 中序 後序遍歷的特性 前序遍歷 1.訪問根節點 2.前序遍歷左子樹 3.前序遍歷右子樹 中...

二叉樹前序 中序 後序遍歷相互求法

今天來總結下二叉樹前序 中序 後序遍歷相互求法,即如果知道兩個的遍歷,如何求第三種遍歷方法,比較笨的方法是畫出來二叉樹,然後根據各種遍歷不同的特性來求,也可以程式設計求出,下面我們分別說明。首先,我們看看前序 中序 後序遍歷的特性 前序遍歷 1.訪問根節點 2.前序遍歷左子樹 3.前序遍歷右子樹 中...

二叉樹前序 中序 後序遍歷相互求法

中 我要發表看法 今天來總結下二叉樹前序 中序 後序遍歷相互求法,即如果知道兩個的遍歷,如何求第三種遍歷方法,比較笨的方法是畫出來二叉樹,然後根據各種遍歷不同的特性來求,也可以程式設計求出,下面我們分別說明。首先,我們看看前序 中序 後序遍歷的特性 前序遍歷 1.訪問根節點 2.前序遍歷左子樹 3....