加分二叉樹

2021-06-27 21:52:29 字數 972 閱讀 7514

描述

設乙個n個節點的二叉樹tree的中序遍歷為(l,2,3,…,n),其中數字1,2,3,…,n為節點編號。每個節點都有乙個分數(均為正整數),記第i個節點的分數為di,tree及它的每個子樹都有乙個加分,任一棵子樹subtree(也包含tree本身)的加分計算方法如下:

subtree的左子樹的加分× subtree的右子樹的加分+subtree的根的分數

若某個子樹為空,規定其加分為1,葉子的加分就是葉節點本身的分數。不考慮它的空子樹。

試求一棵符合中序遍歷為(1,2,3,…,n)且加分最高的二叉樹tree。要求輸出;

(1)tree的最高加分

(2)tree的前序遍歷

格式輸入格式

第1行:乙個整數n(n<30),為節點個數。

第2行:n個用空格隔開的整數,為每個節點的分數(分數<100)。

輸出格式

第1行:乙個整數,為最高加分(結果不會超過4,000,000,000)。

第2行:n個用空格隔開的整數,為該樹的前序遍歷。

分析:這道題表面上是一道樹形dp,事實上完全可以用區間dp解決。**太簡單,懶得寫注釋了。

**如下:

#include

#include

#include

#include

using namespace std;

const int low=-999999999;

int n;

int a[51]=,f[51][51],root[51][51]=;

void front(int x,int y)

int main()

for (int len=1; len<=n; len++)

}f[i][j]=mmax;}}

}printf("%d\n",f[1][n]);

front(1,n);

system("pause");

return 0;

}

加分二叉樹

設乙個n個節點的二叉樹tree的中序遍歷為 l,2,3,n 其中數字1,2,3,n為節點編號。每個節點都有乙個分數 均為正整數 記第i個節點的分數為di,tree及它的每個子樹都有乙個加分,任一棵子樹subtree 也包含tree本身 的加分計算方法如下 subtree的左子樹的加分 subtree...

加分二叉樹

設乙個n個節點的二叉樹tree的中序遍歷為 1,2,3,n 其中數字1,2,3,n為節點編號。每個節點都有乙個分數 均為正整數 記第i個節點的分數為di,tree及它的每個子樹都有乙個加分,任一棵子樹subtree 也包含tree本身 的加分計算方法如下 subtree的左子樹的加分 subtree...

加分二叉樹

設乙個n個結點的二叉樹tree的中序遍歷為 1,2,3,n 其中數字1,2,3,n為結點編號。每個結點都有乙個分數 均為正整數 記第i個結點的分數為di,tree及它的每個子樹都有乙個加分,任一棵子樹subtree 也包含tree本身 的加分計算方法如下 subtree的左子樹的加分 subtree...