題意是,【1,l】,【1,r】之間個數乙個數兩個數的最大公約數等於k 求有多少這樣的數對。
設x是在【1,l】中取的數,y是在【1,r】中取的數。
x =a*k ,y=b*k ,k為最大公約數, 所以a與b互素,問題轉換為區間(1,l/k)(1 , r/k)中有多少互素的數對。
容斥原理在這裡求的是 i 在(1,l/k)中與i不互素的個數。例如 1到10中能被2,3整除的個數為 10 / 2+10 / 3 -10 / 6.
#include#include#includeusing namespace std;
#define ll long long
const int n=100005;
ll phi[n];//前n項尤拉函式的和
int num[n],p[n][25];//num【i】為i的素因子的個數
void get_prime() //p【i】【】表示i的素因子
return 0;
}
怎麼判斷兩個多項式互素 多項式互素的等價條件
多項式互素的等價條件 張景曉 摘 要 多項式的互素是多項式理論的重要內容.本文利用反證法證明了有關多項式互素的若干等價 條件.期刊名稱 赤峰學院學報 自然科學版 年 卷 期 2010 026 008 總頁數 2 多項式理論是代數學的重要內容之一,多項式的互素是多項式理論的重要概念,本文在人們對多項 ...
python計算空間中兩個向量的夾角
python計算空間中兩個向量的夾角 python計算兩個三維向量的夾角 def angle2 v1,v2 x np.array v1 y np.array v2 分別計算兩個向量的模 module x np.sqrt x.dot x module y np.sqrt y.dot y 計算兩個向量的...
為什麼高維空間中的任給兩個向量幾乎都正交?
2011 06 16 17 40 43 念書時第一次聽到這個結論,頓時目瞪口呆,隨機性和高維結合起來居然有這麼漂亮的結論,因為太過震撼,多年以後仍依稀記得,今天下午設計演算法時再次用到,試著回想了一下證明過程,記於此。檢視公式,需要安裝 外掛程式。在n維空間中,給定乙個向量 v 1 不妨假設其為最後...