一.什麼是位元組對齊,為什麼要對齊?
現代計算機中記憶體空間都是按照byte劃分的,從理論上講似乎對任何型別的變數的訪問可以從任何位址開始,但實際情況是在訪問特定型別變數的時候經常在特
定的記憶體位址訪問,這就需要各種型別資料按照一定的規則在空間上排列,而不是順序的乙個接乙個的排放,這就是對齊。
對齊的作用和原因:各個硬體平台對儲存空間的處理上有很大的不同。一些平台對某些特定型別的資料只能從某些特定位址開始訪問。比如有些架構的cpu在訪問
乙個沒有進行對齊的變數的時候會發生錯誤,那麼在這種架構下程式設計必須保證位元組對齊.其他平台可能沒有這種情況,但是最常見的是如果不按照適合其平台要求對
資料存放進行對齊,會在訪問效率上帶來損失。比如有些平台每次讀都是從偶位址開始,如果乙個int型(假設為32位系統)如果存放在偶位址開始的地方,那
麼乙個讀週期就可以讀出這32bit,而如果存放在奇位址開始的地方,就需要2個讀週期,並對兩次讀出的結果的高低位元組進行拼湊才能得到該32bit數
據。顯然在讀取效率上下降很多。
二.位元組對齊對程式的影響:
先讓我們看幾個例子吧(32bit,x86環境,gcc編譯器):
設結構體如下定義:
struct a
;struct b
;現在已知32位機器上各種資料型別的長度如下:
char:1(有符號無符號同)
short:2(有符號無符號同)
int:4(有符號無符號同)
long:4(有符號無符號同)
float:4 double:8
那麼上面兩個結構大小如何呢?
結果是:
sizeof(strcut a)值為8
sizeof(struct b)的值卻是12
結構體a中包含了4位元組長度的int乙個,1位元組長度的char乙個和2位元組長度的short型資料乙個,b也一樣;按理說a,b大小應該都是7位元組。
之所以出現上面的結果是因為編譯器要對資料成員在空間上進行對齊。上面是按照編譯器的預設設定進行對齊的結果,那麼我們是不是可以改變編譯器的這種預設對齊設定呢,當然可以.例如:
#pragma pack (2) /*指定按2位元組對齊*/
struct c
;#pragma pack () /*取消指定對齊,恢復預設對齊*/
sizeof(struct c)值是8。
修改對齊值為1:
#pragma pack (1) /*指定按1位元組對齊*/
struct d
;#pragma pack () /*取消指定對齊,恢復預設對齊*/
sizeof(struct d)值為7。
後面我們再講解#pragma pack()的作用.
三.編譯器是按照什麼樣的原則進行對齊的?
先讓我們看四個重要的基本概念:
1.資料型別自身的對齊值:
對於char型資料,其自身對齊值為1,對於short型為2,對於int,float,double型別,其自身對齊值為4,單位位元組。
2.結構體或者類的自身對齊值:其成員中自身對齊值最大的那個值。
3.指定對齊值:#pragma pack (value)時的指定對齊值value。
4.資料成員、結構體和類的有效對齊值:自身對齊值和指定對齊值中小的那個值。
有了這些值,我們就可以很方便的來討論具體資料結構的成員和其自身的對齊方式。有效對齊值n是最終用來決定資料存放位址方式的值,最重要。有效對齊n,就是
表示「對齊在n上」,也就是說該資料的"存放起始位址%n=0".而資料結構中的資料變數都是按定義的先後順序來排放的。第乙個資料變數的起始位址就是數
據結構的起始位址。結構體的成員變數要對齊排放,結構體本身也要根據自身的有效對齊值圓整(就是結構體成員變數占用總長度需要是對結構體有效對齊值的整數
倍,結合下面例子理解)。這樣就不能理解上面的幾個例子的值了。
例子分析:
分析例子b;
struct b;假
設b從位址空間0x0000開始排放。該例子中沒有定義指定對齊值,在筆者環境下,該值預設為4。第乙個成員變數b的自身對齊值是1,比指定或者預設指定
對齊值4小,所以其有效對齊值為1,所以其存放位址0x0000符合0x0000%1=0.第二個成員變數a,其自身對齊值為4,所以有效對齊值也為4,
所以只能存放在起始位址為0x0004到0x0007這四個連續的位元組空間中,複核0x0004%4=0,且緊靠第乙個變數。第三個變數c,自身對齊值為
2,所以有效對齊值也是2,可以存放在0x0008到0x0009這兩個位元組空間中,符合0x0008%2=0。所以從0x0000到0x0009存放的
都是b內容。再看資料結構b的自身對齊值為其變數中最大對齊值(這裡是b)所以就是4,所以結構體的有效對齊值也是4。根據結構體圓整的要求,
0x0009到0x0000=10位元組,(10+2)%4=0。所以0x0000a到0x000b也為結構體b所占用。故b從0x0000到0x000b
共有12個位元組,sizeof(struct b)=12;其實如果就這乙個就來說它已將滿足位元組對齊了,
因為它的起始位址是0,因此肯定是對齊的,之所以在後面補充2個位元組,是因為編譯器為了實現結構陣列的訪問效率,試想如果我們定義了乙個結構b的陣列,那
麼第乙個結構起始位址是0沒有問題,但是第二個結構呢?按照陣列的定義,陣列中所有元素都是緊挨著的,如果我們不把結構的大小補充為4的整數倍,那麼下一
個結構的起始位址將是0x0000a,這顯然不能滿足結構的位址對齊了,因此我們要把結構補充成有效對齊大小的整數倍.其實諸如:對於char型資料,其
自身對齊值為1,對於short型為2,對於int,float,double型別,其自身對齊值為4,這些已有型別的自身對齊值也是基於陣列考慮的,只
是因為這些型別的長度已知了,所以他們的自身對齊值也就已知了.
同理,分析上面例子c:
#pragma pack (2) /*指定按2位元組對齊*/
struct c
;#pragma pack () /*取消指定對齊,恢復預設對齊*/
第乙個變數b的自身對齊值為1,指定對齊值為2,所以,其有效對齊值為1,假設c從0x0000開始,那麼b存放在0x0000,符合0x0000%1=
0;第二個變數,自身對齊值為4,指定對齊值為2,所以有效對齊值為2,所以順序存放在0x0002、0x0003、0x0004、0x0005四個連續
位元組中,符合0x0002%2=0。第三個變數c的自身對齊值為2,所以有效對齊值為2,順序存放
在0x0006、0x0007中,符合
0x0006%2=0。所以從0x0000到0x00007共八字節存放的是c的變數。又c的自身對齊值為4,所以c的有效對齊值為2。又8%2=0,c
只占用0x0000到0x0007的八個位元組。所以sizeof(struct c)=8.
四.如何修改編譯器的預設對齊值?
1.在vc ide中,可以這樣修改:[project]|[settings],c/c++選項卡category的code generation選項的struct member alignment中修改,預設是8位元組。
2.在編碼時,可以這樣動態修改:#pragma pack .注意:是pragma而不是progma.
arm下的對齊處理
from dui0067d_ads1_2_complib
3.13 type qulifiers
有部分摘自arm編譯器文件對齊部分
對齊的使用:
1.aligned(number) [number為最小對齊的位元組數]
對結構體的對齊的邊界進行定義,注意與 pragma 使用的不同。
2.__packed
__packed是進行一位元組對齊
1.不能對packed的物件進行對齊
2.所有物件的讀寫訪問都進行非對齊訪問
3.float及包含float的結構聯合及未用__packed的物件將不能位元組對齊
4.__packed對區域性整形變數無影響
5.強制由unpacked物件向packed物件轉化是未定義,整形指標可以合法定
義為packed。
__packed int* p; //__packed int 則沒有意義
6.對齊或非對齊讀寫訪問帶來問題
__packed struct struct_test
; //定義如下結構此時b的起始位址一定是不對齊的
//在棧中訪問b可能有問題,因為棧上資料肯定是對齊訪問[from cl]
//將下面變數定義成全域性靜態不在棧上
static char* p;
static struct struct_test a;
void main()
C 中位元組對齊以及位元組對齊的意義
對下面的類 class b 類b 物件的大小,如果直接計算是18 4 2 8 4 但是 sizeof b 結果是24。多出來的 6個位元組是怎麼回事呢?其實是記憶體對齊的原因。編譯器在預設的情況下,分配給各個成員變數的記憶體大小似乎是向佔最大空間的成員變數對齊的 這裡我不敢肯定,還沒看到權威的說法 ...
C 預編譯中關於位元組對齊的問題
通過 pragma pack n 改變c編譯器的位元組對齊方式 在c語言中,結構是一種復合資料型別,其構成元素既可以是基本資料型別 如int long float等 的變數,也可以是一些復合資料型別 如陣列 結構 聯合等 的資料單元。在結構中,編譯器為結構的每個成員按其自然對界 alignment ...
記憶體中的位元組對齊
一 什麼是位元組對齊,為什麼要對齊?現代計算機中記憶體空間都是按照byte劃分的,從理論上講似乎對任何型別的變數的訪問可以從任何位址開始,但實際情況是在訪問特定型別變數的時候經常在特定的記憶體位址訪問,這就需要各種型別資料按照一定的規則在空間上排列,而不是順序的乙個接乙個的排放,這就是對齊。對齊的作...