fft變換,其實就是快速離散傅利葉變換,傅利葉變換是數字訊號處理領域一種很重要的演算法。要知道傅利葉變換演算法的意義,首先要了解傅利葉原理的意義。傅利葉原理表明:任何連續測量的時序或訊號,都可以表示為不同頻率的正弦波訊號的無限疊加。而根據該原理創立的傅利葉變換演算法利用直接測量到的原始訊號,以累加方式來計算該訊號中不同正弦波訊號的頻率、振幅和相位。
和傅利葉變換演算法對應的是反傅利葉變換演算法。該反變換從本質上說也是一種累加處理,這樣就可以將單獨改變的正弦波訊號轉換成乙個訊號。因此,可以說,傅利葉變換將原來難以處理的時域訊號轉換成了易於分析的頻域訊號(訊號的頻譜),可以利用一些工具對這些頻域訊號進行處理、加工。最後還可以利用傅利葉反變換將這些頻域訊號轉換成時域訊號。
乙個模擬訊號,經過adc取樣之後,就變成了數碼訊號。 取樣得到的數碼訊號,就可以做fft變換了。n個取樣點,經過fft之後,就可以得到n個點的fft結果。為了方便進行fft運算,通常n取2的整數次方。
假設取樣頻率為fs,訊號頻率f,取樣點數為n。那麼fft之後結果就是乙個為n點的複數。每乙個點就對應著乙個頻率點。這個點的模值,就是該頻率值下的幅度特性。具體跟原始訊號的幅度有什麼關係呢?假設原始訊號的峰值為a,那麼fft的結果的每個點(除了第乙個點直流分量之外)的模值就是a的n/2倍。而第乙個點就是直流分量,它的模值就是直流分量的n倍。而每個點的相位呢,就是在該頻率下的訊號的相位。第乙個點表示直流分量(即0hz),而最後乙個點n的再下乙個點(實際上這個點是不存在的,這裡是假設的第n+
基於python的快速傅利葉變換FFT(二)
知識點fft變換,其實就是快速離散傅利葉變換,傅利葉變換是數字訊號處理領域一種很重要的演算法。要知道傅利葉變換演算法的意義,首先要了解傅利葉原理的意義。傅利葉原理表明 任何連續測量的時序或訊號,都可以表示為不同頻率的正弦波訊號的無限疊加。而根據該原理創立的傅利葉變換演算法利用直接測量到的原始訊號,以...
python用最小二乘法擬合正弦函式
載入庫 import numpy as np from scipy.optimize import leastsq import pylab as pl 定義函式形式和誤差 def func x,p a,k,theta p return a np.sin 2 np.pi k x theta def ...
Python第二週之函式及其作用域
定義 我們可以把程式中相對獨立的功能模組抽取出來,這樣的好處是可以減少重複 的編寫,將來可以重複使用這些功能模組,python中的函式就是代表了這樣的功能模組。命名 age of student 官方 或 ageofstudent 大部分人的習慣用法,又稱駝峰命名法 呼叫 import 模組 as ...