1. 一般情況下,演算法的基本操作重複執行的次數是模組n的某乙個函式f(n),因此,演算法的時間複雜度記做:t(n)=o(f(n))
分析:隨著模組n的增大,演算法執行的時間的增長率和 f(n) 的增長率成正比,所以 f(n) 越小,演算法的時間複雜度越低,演算法的效率越高。
2. 在計算時間複雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出 t(n) 的同數量級(它的同數量級有以下:1,log(2)n,n,n log(2)n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n) = 該數量級,若 t(n)/f(n) 求極限可得到一常數c,則時間複雜度t(n) = o(f(n))
例:演算法:
則有 t(n) = n 的平方+n的三次方,根據上面括號裡的同數量級,我們可以確定 n的三次方 為t(n)的同數量級
則有 f(n) = n的三次方,然後根據 t(n)/f(n) 求極限可得到常數c
則該演算法的時間複雜度:t(n) = o(n^3) 注:n^3即是n的3次方。
3.在pascal中比較容易理解,容易計算的方法是:看看有幾重for迴圈,只有一重則時間複雜度為o(n),二重則為o(n^2),依此類推,如果有二分則為o(logn),二分例如快速冪、二分查詢,如果乙個for迴圈套乙個二分,那麼時間複雜度則為o(nlogn)。
按數量級遞增排列,常見的時間複雜度有:
常數階o(1),對數階o(log2n),線性階o(n),
線性對數階o(nlog2n),平方階o(n^2),立方階o(n^3),...,
k次方階o(n^k),指數階o(2^n)。隨著問題規模n的不斷增大,上述時間複雜度不斷增大,演算法的執行效率越低。
有幾層for迴圈,時間複雜度就是n的多少次方
每次迴圈減半就是nlogn
乙個程式的空間複雜度是指執行完乙個程式所需記憶體的大小。利用程式的空間複雜度,可以對程式的執行所需要的記憶體多少有個預先估計。乙個程式執行時除了需要儲存空間和儲存本身所使用的指令、常數、變數和輸入資料外,還需要一些對資料進行操作的工作單元和儲存一些為現實計算所需資訊的輔助空間。程式執行時所需儲存空間包括以下兩部分。
(1)固定部分。這部分空間的大小與輸入/輸出的資料的個數多少、數值無關。主要包括指令空間(即**空間)、資料空間(常量、簡單變數)等所佔的空間。這部分屬於靜態空間。
(2)可變空間,這部分空間的主要包括動態分配的空間,以及遞迴棧所需的空間等。這部分的空間大小與演算法有關。
乙個演算法所需的儲存空間用f(n)表示。
s(n)=o(f(n))
其中n為問題的規模,s(n)表示空間複雜度。
乙個演算法所耗費的時間=演算法中每條語句的執行時間之和
每條語句的執行時間=語句的執行次數(即頻度(frequency count))×語句執行一次所需時間
演算法轉換為程式後,每條語句執行一次所需的時間取決於機器的指令性能、速度以及編譯所產生的**質量等難以確定的因素。
若要獨立於機器的軟、硬體系統來分析演算法的時間耗費,則設每條語句執行一次所需的時間均是單位時間,乙個演算法的時間耗費就是該演算法中所有語句的頻度之和。
時間複雜度 空間複雜度
時間複雜度 在電腦科學中,演算法的時間複雜度是乙個函式,它定性描述了該演算法的執行時間。這是乙個關於代表演算法輸入值的字串 的長度的函式。時間複雜度常用大o符號 表述,不包括這個函式的低階項和首項係數。計算時間複雜度的方法 1 只保留高階項,低階項直接丟棄 2 係數不要 3 執行次數是常數是為o 1...
時間複雜度 空間複雜度
演算法複雜度分為時間複雜度和空間複雜度。其作用 時間複雜度是指執行演算法所需要的計算工作量 而空間複雜度是指執行這個演算法所需要的記憶體空間。一 時間複雜度 時間頻度 乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道...
時間複雜度 空間複雜度
一 時間複雜度 實際是指程式執行次數,而不是程式執行時間 1.我們一般討論的是最壞時間複雜度,這樣做的原因是 最壞情況下的時間複雜度是演算法在任何輸入例項上執行時間的上限,以最壞代表最全。2.時間複雜度的書寫規則 忽略常數項,用o 1 表示 選取最壞時間複雜度即選取增長最快的項 遞迴的時間複雜度 遞...