卷積神經網路的卷積操作

2022-09-03 21:18:17 字數 291 閱讀 6935

卷積的運算可以分為反轉、平移,相乘,求和。

在影象處理中,影象是乙個大矩陣,卷積模板是乙個小矩陣。按照上述過程,就是先把小矩陣反轉,然後平移到某一位置,小矩陣的每乙個小格對應大矩陣裡面的乙個小格,然後把對應小格裡面的數相乘,把所有對應小格相乘的結果相加求和,得出的最後結果賦值給小矩陣**小格對應的影象中小格的值,替換原來的值。就是上述說到的,反轉、平移、相乘、求和。

一般影象卷積就是從第乙個畫素(小格)開始遍歷到最後乙個畫素(小格)。之後的平滑、模糊、銳化、邊緣提取等本質上都是卷積,只是模板不同。

卷積神經網路 卷積操作

對於cnn,卷積操作的主要目的是從輸入影象中提取特徵。卷積通過使用輸入資料的小方塊學習影象特徵來保留畫素之間的空間關係。卷積操作就是卷積核 過濾器 filter 在原始中進行滑動得到特徵圖 feature map 的過程。假設我們現在有乙個單通道的原始和乙個卷積核,卷積的過程如圖2所示 卷積得到的特...

卷積神經網路的卷積操作

卷積的運算可以分為反轉 平移,相乘,求和。在影象處理中,影象是乙個大矩陣,卷積模板是乙個小矩陣。按照上述過程,就是先把小矩陣反轉,然後平移到某一位置,小矩陣的每乙個小格對應大矩陣裡面的乙個小格,然後把對應小格裡面的數相乘,把所有對應小格相乘的結果相加求和,得出的最後結果賦值給小矩陣 小格對應的影象中...

卷積神經網路 有趣的卷積神經網路

一 前言 最近一直在研究深度學習,聯想起之前所學,感嘆數學是一門樸素而神奇的科學。f g m1 m2 r 萬有引力描述了宇宙星河運轉的規律,e mc 描述了恆星發光的奧秘,v h d哈勃定律描述了宇宙膨脹的奧秘,自然界的大部分現象和規律都可以用數學函式來描述,也就是可以求得乙個函式。神經網路 簡單又...