有關海量資料處理

2022-09-02 18:57:06 字數 1668 閱讀 9565

1、給定a、b兩個檔案,各存放50億個url,每個url各佔64位元組,記憶體限制是4g,讓你找出a、b檔案共同的url?

方案1:可以估計每個檔案安的大小為50g×64=320g,遠遠大於記憶體限制的4g。所以不可能將其完全載入到記憶體中處理。考慮採取分而治之的方法。

s 遍歷檔案a,對每個url求取

,然後根據所取得的值將url分別儲存到1000個小檔案(記為

)中。這樣每個小檔案的大約為300m。

s 遍歷檔案b,採取和a相同的方式將url分別儲存到1000個小檔案(記為

)。這樣處理後,所有可能相同的url都在對應的小檔案(

)中,不對應的小檔案不可能有相同的url。然後我們只要求出1000對小檔案中相同的url即可。

s  求每對小檔案中相同的url時,可以把其中乙個小檔案的url儲存到hash_set中。然後遍歷另乙個小檔案的每個url,看其是否在剛才構建的hash_set中,如果是,那麼就是共同的url,存到檔案裡面就可以了。

方案2:如果允許有一定的錯誤率,可以使用bloom filter,4g記憶體大概可以表示340億bit。將其中乙個檔案中的url使用bloom  filter對映為這340億bit,然後挨個讀取另外乙個檔案的url,檢查是否與bloom  filter,如果是,那麼該url應該是共同的url(注意會有一定的錯誤率)。

2、有10個檔案,每個檔案1g,每個檔案的每一行存放的都是使用者的query,每個檔案的query都可能重複。要求你按照query的頻度排序。

方案1:

s、順序讀取10個檔案,按照hash(query)的結果將query寫入到另外10個檔案(記為

)中。這樣新生成的檔案每個的大小大約也1g(假設hash函式是隨機的)。

s、找一台內存在2g左右的機器,依次對

用hash_map(query,  query_count)來統計每個query出現的次數。利用快速/堆/歸併排序按照出現次數進行排序。將排序好的query和對應的query_cout輸出到檔案中。這樣得到了10個排好序的檔案(記為

)。s、對

這10個檔案進行歸併排序(內排序與外排序相結合)。

方案2:

一般query的總量是有限的,只是重複的次數比較多而已,可能對於所有的query,一次性就可以加入到記憶體了。這樣,我們就可以採用trie樹/hash_map等直接來統計每個query出現的次數,然後按出現次數做快速/堆/歸併排序就可以了。

方案3:

與方案1類似,但在做完hash,分成多個檔案後,可以交給多個檔案來處理,採用分布式的架構來處理(比如mapreduce),最後再進行合併。

3、有乙個1g大小的乙個檔案,裡面每一行是乙個詞,詞的大小不超過16位元組,記憶體限制大小是1m。返回頻數最高的100個詞。

方案1:採用2-bitmap(每個數分配2bit,00表示不存在,01表示出現一次,10表示多次,11無意義)進行,共需記憶體

記憶體,還可以接受。然後掃瞄這2.5億個整數,檢視bitmap中相對應位,如果是00變01,01變10,10保持不變。所描完事後,檢視bitmap,把對應位是01的整數輸出即可。

方案2:也可採用上題類似的方法,進行劃分小檔案的方法。然後在小檔案中找出不重複的整數,並排序。然後再進行歸併,注意去除重複的元素。

6、海量資料分布在100臺電腦中,想個辦法高校統計出這批資料的top10。

海量資料處理

1 有一千萬條簡訊,有重複,以文字檔案的形式儲存,一行一條,有 重複。請用5分鐘時間,找出重複出現最多的前10條。方法1 可以用雜湊表的方法對1千萬條分成若干組進行邊掃瞄邊建雜湊表。第一次掃瞄,取首位元組,尾位元組,中間隨便兩位元組作為hash code,插入到hash table中。並記錄其位址和...

海量資料處理

給定a b兩個檔案,各存放50億個url,每個url各占用64位元組,記憶體限制是4g,如何找出a b檔案共同的url?答案 可以估計每個檔案的大小為5g 64 300g,遠大於4g。所以不可能將其完全載入到記憶體中處理。考慮採取分而治之的方法。遍歷檔案a,對每個url求取hash url 1000...

海量資料處理

分而治之 hash對映 hash統計 堆 快速 歸併排序 300萬個查詢字串中統計最熱門的10個查詢。針對此類典型的top k問題,採取的對策往往是 hashmap 堆。hash統計 先對這批海量資料預處理。具體方法是 維護乙個key為query字串,value為該query出現次數的hashtab...