最近很多讀者關注《推薦系統實踐》一書,詢問本書目前的寫作進展和出版時間。自今日起,本書正式進入開放出版流程,作者會全程在本社群中互動,與大家分享寫做過程中的點滴。
技術背景
推薦系統從2023年開始,經過amazon,netflix等著名公司的努力,已經充分證明了它的作用。最近,越來越多的國內公司開始關注推薦系統,在技術人員中有較高的關注度。
經過20多年的發展,推薦系統的理論已經較為成熟,知識體系比較系統。國外也出版了很多推薦系統方面的書。但是目前國內沒有推薦系統方面比較好的書。目前國內作者寫的推薦系統方面的圖書很少,僅有的幾本質量也不高。國外出版,國內翻譯的書,以《集體智慧型程式設計》為代表,獲得了很多推薦系統和資料探勘領域的專業人士的喜愛。
本書從資料出發,一步步地介紹在得到什麼資料的時候可以設計怎樣的推薦系統。面向廣大的推薦系統開發人員,以實戰為基礎,深入淺出地介紹每種推薦方法背後的理論基礎,著重討論每種演算法的實現、在實際系統中的效果、方法的優點、缺陷以及解決方法。
本書的幾位作者是目前國內推薦系統方面的技術牛人。這本書同時獲得了resyschina的強力推薦!
作者背景
項亮本科畢業於中國科技大學自動化系,博士畢業於中科院自動化所(模式識別國家重點實驗室),專業研究方向是機器學習和資料探勘。2023年,美國netflix公司發起、組織了一場為改善其電影推薦系統演算法,並懸賞一百萬美元的專業比賽,參賽者是由來自186個國家的計算機科學家、專家、學者等組成的數萬支隊伍。在這場競賽中項亮所在的團隊(the ensemble)在公開測試排名中名列第一,最終獲得了第二名。項亮也是從參加netflix prize開始參與推薦系統的研究。 目前就職於hulu。
陳義現就職於豆瓣,從事推薦系統演算法的研究。之前在理光,主要是從事模式識別和機器學習的研究。
本書特色
1.作者都有相關領域的研究經驗和實戰經驗,既知道相關研究的最新進展,也知道實際系統中各種方法的效果。
2.本書以實戰為基礎,理論和實踐並重,適合不同層次的讀者。
推薦閱讀