常用進製: 下面例子中是舉數字10在以下這些進製中是如何表示的
二進位制:在計算機中使用,取值範圍 0 和 1,以 0b 開頭,如 :0b10
八進位制:取值範圍0----7,以0開頭,如:010
十進位制:在日常生活中使用,取值範圍0----9 ,如:10
十六進製制:取值範圍 0----9 和 a----f,以0x開頭,如:0x10
十進位制 ------------------->十六進製制
0 0
1 1
...... ......
9 9
10 a
11 b
12 c
13 d
14 e
15 f
二進位制與十進位制(正整數)之間轉換
十進位制轉為二進位制,稱之為除2取餘法
10 -------------------> 0b?? (結果為0b1010)
當商為0時,則計算終止,對應的二進位制結果為所以餘數倒著取,所以結果也就是0b1010
二進位制轉為十進位制,稱之為乘2疊加法(從右往左 從2的0次方開始疊加)
0b1010----------------> 10
進製之間轉換
簡介 二進位制轉換 二進位制轉八進位制 將二進位制從右至左,三個為一組,不夠左邊填0補齊,按權相加,拼接得到8進製 二進位制轉10進製 將二進位制數直接按權相加 二進位制轉16進製制 將二進位制從右至左,四個為一組,不夠左邊補0,按權相加,拼接得到10進製 轉為二進位制 八進位制轉二進位制 每乙個位...
進製之間轉換
對於整數部分,用被除數反覆除以2,除第一次外,每次除以2均取前一次商的整數部分作被除數並依次記下每次的餘數。另外,所得到的商的最後一位餘數是所求二進位制數的最高位。對於小數部分,採用連續乘以基數2,並依次取出的整數部分,直至結果的小數部分為0為止。故該法稱 乘基取整法 10進製數轉換成二進位制數,這...
進製之間轉換
明確乙個概念,即所謂的16進製制,10進製,2進製,只是一種整型數值的表示方法表示方法,同乙個數值可以有的16進製制,10進製,2進製的表示,也可以使用16進製制,10進製,2進製來建立同乙個數值。並且一般在一定範圍內,不同方式表示的同乙個數字在記憶體中的儲存結構也是相同的。整形類數值根本就沒有進製...