1. 闡述hadoop生態系統中,hdfs, mapreduce, yarn, hbase及spark的相互關係。
2. spark已打造出結構一體化、功能多樣化的大資料生態系統,請簡述spark生態系統。
3. 用**描述你所理解的spark執行架構,執行流程。
4. 軟體平台準備:linux-hadoop。
1.hadoop是乙個能夠對大量資料進行分布式處理的軟體框架。具有可靠、高效、可伸縮的特點。
hadoop的核心是hdfs和mapreduce,hadoop2.0還包括yarn。
(1)hdfs集群:負責海量資料的儲存。
(2)yarn集群:負責海量資料運算時的資源排程。
(3)mapreduce:它其實是乙個應用程式開發包。
從開源角度看,yarn的提出,從一定程度上弱化了多計算框架的優劣之爭。yarn是在hadoop mapreduce基礎上演化而來的,在mapreduce時代,很多人批評mapreduce不適合迭代計算和流失計算,於是出現了spark和storm等計算框架,而這些系統的開發者則在自己的**上或者**裡與mapreduce對比,鼓吹自己的系統多麼先進高效,而出現了yarn之後,則形勢變得明朗:mapreduce只是執行在yarn之上的一類應用程式抽象,spark和storm本質上也是,他們只是針對不同型別的應用開發的,沒有優劣之別,各有所長,合併共處,而且,今後所有計算框架的開發,不出意外的話,也應是在yarn之上。這樣,乙個以yarn為底層資源管理平台,多種計算框架執行於其上的生態系統誕生了。
hdfs
hdfs(hadoop分布式檔案系統)源自於google的gfs**,發表於2023年10月,hdfs是gfs的實現版。hdfs是hadoop體系中資料儲存管理的基礎,它是乙個高度容錯的系統,能檢測和應對硬體故障,在低成本的通用硬體上執行。hdfs簡化了檔案的一次性模型,通過流式資料訪問,提供高吞吐量應用程式資料訪問功能,適用帶有資料集的應用程式。hdfs提供一次寫入多次讀取的機制,資料以塊的形式,同時分布儲存在不同的物理機器上。
hdfs預設的最基本的儲存單位是64mb的資料塊,和普通檔案系統一樣,hdfs中的檔案被分成64mb一塊的資料塊儲存。它的開發是基於流資料模式訪問和處理超大檔案的需求。
mapreduce
mapduce(分布式計算框架)源自於google的mapreduce**,發表於2023年12月,hadoop mapreduce是google reduce 轉殖版。mapreduce是一種分布式計算模型,用以進行海量資料的計算。它遮蔽了分布式計算框架細節,將計算抽象成map 和reduce兩部分,其中map對資料集上的獨立元素進行指定的操作,生成鍵-值對形式中間結果。reduce則對中間結果中相同「鍵」的所有「值」進行規約,以得到最終結果。mapreduce非常適合在大量計算機組成的分布式並行環境裡進行資料處理。
hbase
hbase(分布式列存資料庫)源自google的bigtable**,發表於2023年11月,hbase是google table的實現。hbase是乙個建立在hdfs之上,面向結構化資料的可伸縮、高可靠、高效能、分布式和面向列的動態模式資料庫。hbase採用了bigtable的資料模型,即增強的稀疏排序對映表(key/value),其中,鍵由行關鍵字、列關鍵字和時間戳構成。hbase提供了對大規模
yarn
yarn(分布式資源管理器)是下一代mapreduce,即mrv2,是在第一代mapreduce基礎上演變而來的,主要是為了解決原始hadoop擴充套件性差,不支援多計算框架而提出的。yarn是下一代hadoop計算平台,是乙個通用的執行時框架,使用者可以編寫自己的極端框架,在該執行環境中執行。
spark
spark(記憶體dag計算模型)是乙個apche專案,被標榜為「快如閃電的集群計算」,它擁有乙個繁榮的開源社群,並且是目前最活躍的apache專案。最早spark是uc berkeley amp lab所開源的類hadoop mapreduce的通用計算框架,spark提供了乙個更快、更通用的資料處理平台。和hadoop相比,spark平台可以讓你的程式在記憶體中執行時速度提公升100倍,或者在磁碟上執行時速度提公升10倍。
目前spark是乙個非常流行的記憶體計算(或者迭代式計算,dag計算)框架。
2.答:spark的設計遵循「乙個軟體棧滿足不同應用場景」的理念,逐漸形成一套完整生態系統,既能夠提供記憶體計算框架,也可以支援sql即席查詢、實時流式計算、機器學習和圖計算等。spark可以部署在資源管理器yarn之上,提供一站式的大資料解決方案。因此,spark所提供的生態系統同時支援批處理、互動式查詢和流資料處理。
01 Spark架構與執行流程
1.闡述hadoop生態系統中,hdfs,mapreduce,yarn,hbase及spark的相互關係,為什麼要引入yarn和spark。答 hadoop對應於google三駕馬車 hdfs對應於gfs,即分布式檔案系統,mapreduce即平行計算框架,hbase對應於bigtable,即分布式...
01 Spark架構與執行流程
1.闡述hadoop生態系統中,hdfs,mapreduce,yarn,hbase及spark的相互關係,為什麼要引入yarn和spark。hdfs hadoop分布式檔案系統 源自於google的gfs 發表於2003年10月,hdfs是gfs的實現版。hdfs是hadoop體系中資料儲存管理的基...
01 Spark架構與執行流程
1.闡述hadoop生態系統中,hdfs,mapreduce,yarn,hbase及spark的相互關係,為什麼要引入yarn和spark。1 引用yarn是為了解決原始hadoop擴充套件性差,不支援多計算框架而提出的 2 spark的速度比hadoop更快。同樣的事情,hadoop要兩分鐘,而s...