一、概念
時間複雜度是總運算次數表示式中受n的變化影響最大的那一項(不含係數)比如:一般總運算次數表示式類似於這樣:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0時,時間複雜度就是o(2^n);
a=0,b<>0 =>o(n^3);
a,b=0,c<>0 =>o(n^2)依此類推
eg:
(1) for(i=1;i<=n;i++) //迴圈了n*n次,當然是o(n^2)for(j=1;j<=n;j++)
s++;
(2) for(i=1;i<=n;i++)//迴圈了(n+n-1+n-2+...+1)≈(n^2)/2,因為時間複雜度是不考慮係數的,所以也是o(n^2)
for(j=i;j<=n;j++)
s++;
(3) for(i=1;i<=n;i++)//迴圈了(1+2+3+...+n)≈(n^2)/2,當然也是o(n^2)
for(j=1;j<=i;j++)
s++;
(4) i=1;k=0;
while(i<=n-1)//迴圈了
n-1≈n次,所以是o(n)(5) for(i=1;i<=n;i++)
for(k=1;k<=j;k++)
x=x+1;
//迴圈了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(這個公式要記住哦)≈(n^3)/3,不考慮係數,自然是o(n^3)
另外,在時間複雜度中,log(2,n)(以2為底)與lg(n)(以10為底)是等價的,因為對數換底公式:
log(a,b)=log(c,b)/log(c,a)所以,log(2,n)=log(2,10)*lg(n),忽略掉係數,二者當然是等價的
二、計算方法1.乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且乙個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。
乙個演算法中的語句執行次數稱為語句頻度或時間頻度。記為t(n)。
2.一般情況下,演算法的基本操作重複執行的次數是模組n的某乙個函式f(n),因此,演算法的時間複雜度記做:t(n)=o(f(n))。隨著模組n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間複雜度越低,演算法的效率越高。
在計算時間複雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出t(n)的同數量級(它的同數量級有以下:1,log2n ,n ,nlog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若t(n)/f(n)求極限可得到一常數c,則時間複雜度t(n)=o(f(n))。3.常見的時間複雜度
按數量級遞增排列,常見的時間複雜度有:
常數階o(1), 對數階o(log2n), 線性階o(n), 線性對數階o(nlog2n), 平方階o(n^2), 立方階o(n^3),..., k次方階o(n^k), 指數階o(2^n) 。
其中,1.o(n),o(n^2), 立方階o(n^3),..., k次方階o(n^k) 為多項式階時間複雜度,分別稱為一階時間複雜度,二階時間複雜度。。。。
2.o(2^n),指數階時間複雜度,該種不實用
3.對數階o(log2n), 線性對數階o(nlog2n),除了常數階以外,該種效率最高
例:演算法:四、for(i=1;i<=n;++i)
}則有 t(n)= n^2+n^3,根據上面括號裡的同數量級,我們可以確定 n^3為t(n)的同數量級
則有f(n)= n^3,然後根據t(n)/f(n)求極限可得到常數c
則該演算法的 時間複雜度:t(n)=o(n^3)
定義:如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t(n),它是n的某一函式 t(n)稱為這一演算法的「時間複雜性」。
當輸入量n逐漸加大時,時間複雜性的極限情形稱為演算法的「漸近時間複雜性」。
我們常用大o表示法表示時間複雜性,注意它是某乙個演算法的時間複雜性。大o表示只是說有上界,由定義如果f(n)=o(n),那顯然成立f(n)=o(n^2),它給你乙個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。
此外,乙個問題本身也有它的複雜性,如果某個演算法的複雜性到達了這個問題複雜性的下界,那就稱這樣的演算法是最佳演算法。
「大o記法」:在這種描述中使用的基本引數是
n,即問題例項的規模,把複雜性或執行時間表達為n的函式。這裡的「o」表示量級 (order),比如說「二分檢索是 o(logn)的」,也就是說它需要「通過logn量級的步驟去檢索乙個規模為n的陣列」記法 o ( f(n) )表示當 n增大時,執行時間至多將以正比於 f(n)的速度增長。
這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,乙個低附加代價的o(n2)演算法在n較小的情況下可能比乙個高附加代價的 o(nlogn)演算法執行得更快。當然,隨著n足夠大以後,具有較慢上公升函式的演算法必然工作得更快。
o(1)
temp=i;i=j;j=temp;
以上三條單個語句的頻度均為1,該程式段的執行時間是乙個與問題規模n無關的常數。演算法的時間複雜度為常數階,記作t(n)=o(1)。如果演算法的執行時間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是乙個較大的常數。此類演算法的時間複雜度是o(1)。
o(n^2)
2.1.
交換i和j的內容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++)
(n^2次 )
sum++; (n^2次 )
解:t(n)=2n^2+n+1 =o(n^2)
2.2.
for (i=1;io(n)
2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
解:語句1的頻度:2,
語句2的頻度:
n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
t(n)=2+n+3(n-1)=4n-1=o(n).
o(log2n
)2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 語句1的頻度是1,
設語句2的頻度是f(n), 則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)=
log2n,
t(n)=o(log2n )
o(n^3)
2.5.
for(i=0;i
dfs時間複雜度 時間複雜度 空間複雜度
時間複雜度的數學證明方法相對比較複雜,通常在工程實際中,會分析就好。注意 只看最高複雜度的運算 int for for for for int遞迴如何分析時間複雜度?常數係數可以忽略,在分析時不用考慮,只要說以上術語即可。主定理 master throrem 上述第四種是歸併排序,所有排序演算法,最...
時間複雜度 空間複雜度
時間複雜度 在電腦科學中,演算法的時間複雜度是乙個函式,它定性描述了該演算法的執行時間。這是乙個關於代表演算法輸入值的字串 的長度的函式。時間複雜度常用大o符號 表述,不包括這個函式的低階項和首項係數。計算時間複雜度的方法 1 只保留高階項,低階項直接丟棄 2 係數不要 3 執行次數是常數是為o 1...
時間複雜度 空間複雜度
演算法複雜度分為時間複雜度和空間複雜度。其作用 時間複雜度是指執行演算法所需要的計算工作量 而空間複雜度是指執行這個演算法所需要的記憶體空間。一 時間複雜度 時間頻度 乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道...