分割問題 知識點

2022-05-05 08:54:10 字數 1438 閱讀 1988

(1) n條直線最多分平面問題(hdu2050)

題目大致如:n條直線,最多可以把平面分為多少個區域。

析:當有n-1條直線時,平面最多被分成了f(n-1)個區域。則第n條直線要是切成的區域數最多,就必須與每條直線相交且不能有同一交點。這樣就會得到n-1個交點。這些交點將第n條直線分為2條射線和n-2條線斷。而每條射線和線斷將以有的區域一分為二。這樣就多出了2+(n-2)個區域。

故:f(n)=f(n-1)+n

(2) 折線分平面(hdu2050)

根據直線分平面可知,由交點決定了射線和線段的條數,進而決定了新增的區域數。當n-1條折線時,區域數為f(n-1)。為了使增加的區域最多,則折線的兩邊的線段要和n-1條折線的邊,即2*(n-1)條線段相交。那麼新增的線段數為4*(n-1),射線數為2。但要注意的是,折線本身相鄰的兩線段只能增加乙個區域。

故:f(n)=f(n-1)+4(n-1)+2-1

=f(n-1)+4(n-1)+1

=f(n-2)+4(n-2)+4(n-1)+2

……=f(1)+4+4*2+……+4(n-1)+(n-1)   

=2n^2-n+1

(3) 封閉曲線分平面問題

題目大致如設有n條封閉曲線畫在平面上,而任何兩條封閉曲線恰好相交於兩點,且任何三條封閉曲線不相交於同一點,問這些封閉曲線把平面分割成的區域個數。

析:當n-1個圓時,區域數為f(n-1).那麼第n個圓就必須與前n-1個圓相交,則第n個圓被分為2(n-1)段線段,增加了2(n-1)個區域。

故: f(n)=f(n-1)+2(n-1)     

=f(1)+2+4+……+2(n-1)

=n^2-n+2

(4)平面分割空間問題(hdu1290)

由二維的分割問題可知,平面分割與線之間的交點有關,即交點決定射線和線段的條數,從而決定新增的區域數。試想在三維中則是否與平面的交線有關呢?當有n-1個平面時,分割的空間數為f(n-1)。要有最多的空間數,則第n個平面需與前n-1個平面相交,且不能有共同的交線。即最多有n-1 條交線。而這n-1條交線把第n個平面最多分割成g(n-1)個區域。(g(n)為(1)中的直線分平面的個數)此平面將原有的空間一分為二,則最多增加g(n-1)個空間。

故:f=f(n-1)+g(n-1)    ps:g(n)=n(n+1)/2+1

=f(n-2)+g(n-2)+g(n-1)

……=f(1)+g(1)+g(2)+……+g(n-1)

=2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)

=(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1

=(n^3+5n)/6+1

TestLink知識點Mantis知識點

testlink知識點 1 testlink系統提供了六種角色 a guest 只有讀的許可權,適合於檢視測試用例和測試需求,以及專案分析的使用者。b testdesigner 可以開展測試用例和測試需求的所有工作。c tester 只能執行測試用例。d senior tester 可以檢視和維護測...

問題和知識點總結

移動端的頁面很多時候在本地和真機上的表現是不一樣的,所以寫出的頁面需要真機上檢視,所以使用gulp再本地搭建伺服器就可以實現了 在之前專案的基礎上做的修改 設定埠1 const gulp require gulp 命令 gulp就可以執行專案了 div class containbox no scr...

python大一知識點 python知識點複習

放假歸來,這幾天複習了一下好久不用的python,總結了一下知識點。語法基礎tuple與list的異同都由多個元素組成 tuple由 組成,list由組成 tuple不可變,list可變 tuple表示的是一種結構,而list表示的是多個事物的集合 tuple操作比list快 字串用法要點 轉義符和...