首先,快取由於其高併發和高效能的特性,已經在專案中被廣泛使用。在讀取快取方面,大家沒啥疑問,都是按照下圖的流程來進行業務操作
但是在更新快取方面,對於更新完資料庫,是更新快取呢,還是刪除快取。又或者是先刪除快取,再更新資料庫,其實大家存在很大的爭議
本文由以下三個部分組成 1、講解快取更新策略 2、對每種策略進行缺點分析 3、針對缺點給出改進方案
回到目錄
先做乙個說明,從理論上來說,給快取設定過期時間,是保證最終一致性的解決方案。這種方案下,我們可以對存入快取的資料設定過期時間,所有的寫操作以資料庫為準,對快取操作只是盡最大努力即可。也就是說如果資料庫寫成功,快取更新失敗,那麼只要到達過期時間,則後面的讀請求自然會從資料庫中讀取新值然後回填快取。因此,接下來討論的思路不依賴於給快取設定過期時間這個方案。 在這裡,我們討論三種更新策略:
回到目錄
這套方案,大家是普遍反對的。為什麼呢?有如下兩點原因。
原因一(執行緒安全角度)同時有請求a和請求b進行更新操作,那麼會出現
這就出現請求a更新快取應該比請求b更新快取早才對,但是因為網路等原因,b卻比a更早更新了快取。這就導致了髒資料,因此不考慮。
原因二(業務場景角度)有如下兩點:
接下來討論的就是爭議最大的,先刪快取,再更新資料庫。還是先更新資料庫,再刪快取的問題。
回到目錄
該方案會導致不一致的原因是。同時有乙個請求a進行更新操作,另乙個請求b進行查詢操作。那麼會出現如下情形:
那麼,如何解決呢?採用延時雙刪策略偽**如下
轉化為中文描述就是public void write(string key,object data)
那麼,這個1秒怎麼確定的,具體該休眠多久呢?
針對上面的情形,讀者應該自行評估自己的專案的讀資料業務邏輯的耗時。然後寫資料的休眠時間則在讀資料業務邏輯的耗時基礎上,加幾百ms即可。這麼做的目的,就是確保讀請求結束,寫請求可以刪除讀請求造成的快取髒資料。
如果你用了mysql的讀寫分離架構怎麼辦?
ok,在這種情況下,造成資料不一致的原因如下,還是兩個請求,乙個請求a進行更新操作,另乙個請求b進行查詢操作。
採用這種同步淘汰策略,吞吐量降低怎麼辦?
ok,那就將第二次刪除作為非同步的。自己起乙個執行緒,非同步刪除。這樣,寫的請求就不用沉睡一段時間後了,再返回。這麼做,加大吞吐量。
第二次刪除,如果刪除失敗怎麼辦?
這是個非常好的問題,因為第二次刪除失敗,就會出現如下情形。還是有兩個請求,乙個請求a進行更新操作,另乙個請求b進行查詢操作,為了方便,假設是單庫:
回到目錄
首先,先說一下。老外提出了乙個快取更新套路,名為《cache-aside pattern》。其中就指出
失效:應用程式先從cache取資料,沒有得到,則從資料庫中取資料,成功後,放到快取中。
命中:應用程式從cache中取資料,取到後返回。
更新:先把資料存到資料庫中,成功後,再讓快取失效。
另外,知名社交**facebook也在**《scaling memcache at facebook》中提出,他們用的也是先更新資料庫,再刪快取的策略。
這種情況不存在併發問題麼?
不是的。假設這會有兩個請求,乙個請求a做查詢操作,乙個請求b做更新操作,那麼會有如下情形產生
(1)快取剛好失效
(2)請求a查詢資料庫,得乙個舊值
(3)請求b將新值寫入資料庫
(4)請求b刪除快取
(5)請求a將查到的舊值寫入快取 ok,如果發生上述情況,確實是會發生髒資料。
然而,發生這種情況的概率又有多少呢?
發生上述情況有乙個先天性條件,就是步驟(3)的寫資料庫操作比步驟(2)的讀資料庫操作耗時更短,才有可能使得步驟(4)先於步驟(5)。
可是,大家想想,資料庫的讀操作的速度遠快於寫操作的(不然做讀寫分離幹嘛,做讀寫分離的意義就是因為讀操作比較快,耗資源少),因此步驟(3)耗時比步驟(2)更短,這一情形很難出現。 假設,有人非要抬槓,有強迫症,一定要解決怎麼辦?
如何解決上述併發問題?
首先,給快取設有效時間是一種方案。其次,採用策略(2)裡給出的非同步延時刪除策略,保證讀請求完成以後,再進行刪除操作。
還有其他造成不一致的原因麼?
有的,這也是快取更新策略(2)和快取更新策略(3)都存在的乙個問題,如果刪快取失敗了怎麼辦,那不是會有不一致的情況出現麼。比如乙個寫資料請求,然後寫入資料庫了,刪快取失敗了,這會就出現不一致的情況了。這也是快取更新策略(2)裡留下的最後乙個疑問。
如何解決?提供乙個保障的重試機制即可,這裡給出兩套方案。
方案一: 如下圖所示
流程如下所示
方案二:
流程如下圖所示:
備註說明:上述的訂閱binlog程式在mysql中有現成的中介軟體叫canal,可以完成訂閱binlog日誌的功能。至於oracle中,博主目前不知道有沒有現成中介軟體可以使用。另外,重試機制,博主是採用的是訊息佇列的方式。如果對一致性要求不是很高,直接在程式中另起乙個執行緒,每隔一段時間去重試即可,這些大家可以靈活自由發揮,只是提供乙個思路。
強一致性 弱一致性 最終一致性
這種方式在es等分布式系統中也有體現,可以設定主shard提交即返回成功,或者需要replica shard提交成功再返回。提到分布式架構就一定繞不開 一致性 問題,而 一致性 其實又包含了資料一致性和事務一致性兩種情況,本文主要討論資料一致性 事務一致性指acid 複製是導致出現資料一致性問題的唯...
Redis快取一致性
用過redis的應該都清楚,redis作為記憶體快取,只是他查詢快的一大優勢,關係型資料庫只能用作儲存重要資料,或者備份快取的資料,這個時候,不可避免,我們會遇到快取中的資料與關係型資料庫中的資料不一致的情況。出現不一致的現象很常見,如果你是單個使用者肯定不會出現這種情況,如果在多執行緒併發的情況下...
Redis一致性方案
儘管到目前為止,我在專案中很少遇到快取不一致問題,僅有一次是因為 原因。就是那次讓我考慮快取不一致的解決方案,網上有很方案,例如加鎖,訊息佇列,或延遲刪除,還有監控binlog日誌,以及用lua實現樂觀鎖,但我以為這些方案都不是太理想,要麼增加了系統的複雜度,要麼不能做到實時一致性。一天我漫步在乙個...