PAT乙級1001題解

2021-10-25 22:28:42 字數 624 閱讀 3963

1001 害死人不償命的(3n+1)猜想 (15 分)

卡拉茲(callatz)猜想:

對任何乙個正整數 n,如果它是偶數,那麼把它砍掉一半;如果它是奇數,那麼把 (3n+1) 砍掉一半。這樣一直反覆砍下去,最後一定在某一步得到 n=1。卡拉茲在 1950 年的世界數學家大會上公布了這個猜想,傳說當時耶魯大學師生齊動員,拼命想證明這個貌似很傻很天真的命題,結果鬧得學生們無心學業,一心只證 (3n+1),以至於有人說這是乙個陰謀,卡拉茲是在蓄意延緩美國數學界教學與科研的進展……

我們今天的題目不是證明卡拉茲猜想,而是對給定的任一不超過 1000 的正整數 n,簡單地數一下,需要多少步(砍幾下)才能得到 n=1?

輸入格式:

每個測試輸入包含 1 個測試用例,即給出正整數 n 的值。

輸出格式:

輸出從 n 計算到 1 需要的步數。

輸入樣例:

3輸出樣例:

5

#include

using

namespace std;

intmain()

else

cnt++;}

cout

}

1.迴圈條件

2.奇偶數的判斷

PAT乙級試題 1001

對任何乙個自然數n,如果它是偶數,那麼把它砍掉一半 如果它是奇數,那麼把 3n 1 砍掉一半。這樣一直反覆砍下去,最後一定在某一步得到n 1。卡拉茲在1950年的世界數學家大會上公布了這個猜想,傳說當時耶魯大學師生齊動員,拼命想證明這個貌似很傻很天真的命題,結果鬧得學生們無心學業,一心只證 3n 1...

PAT 乙級題目1001

卡拉茲 callatz 猜想 對任何乙個正整數 n,如果它是偶數,那麼把它砍掉一半 如果它是奇數,那麼把 3n 1 砍掉一半。這樣一直反覆砍下去,最後一定在某一步得到 n 1。卡拉茲在 1950 年的世界數學家大會上公布了這個猜想,傳說當時耶魯大學師生齊動員,拼命想證明這個貌似很傻很天真的命題,結果...

PAT乙級練習(1001)

1001 害死人不償命的 3n 1 猜想 卡拉茲 callatz 猜想 對任何乙個正整數 n,如果它是偶數,那麼把它砍掉一半 如果它是奇數,那麼把 3n 1 砍掉一半。這樣一直反覆砍下去,最後一定在某一步得到 n 1。卡拉茲在 1950 年的世界數學家大會上公布了這個猜想,傳說當時耶魯大學師生齊動員...