輾轉相除法求兩數最大公約數

2021-10-23 04:12:22 字數 604 閱讀 6146

輾轉相除法是求兩個自然數的最大公約數的一種方法,也叫歐幾里德演算法。

例如,求(319,377):

∵ 319÷377=0(餘319)

∴(319,377)=(377,319);

∵ 377÷319=1(餘58)

∴(377,319)=(319,58);

∵ 319÷58=5(餘29)

∴ (319,58)=(58,29);

∵ 58÷29=2(餘0)

∴ (58,29)= 29;

∴ (319,377)=29。

可以寫成右邊的格式。

用輾轉相除法求幾個數的最大公約數,可以先求出其中任意兩個數的最大公約數,再求這個最大公約數與第三個數的最大公約數,依次求下去,直到最後乙個數為止。最後所得的那個最大公約數,就是所有這些數的最大公約數。

#include 「stdio.h」

#include 「windows.h」

#pragma warning (disable:4996)

int main()

printf(「兩數的最大公倍數是:%d」, a);

system(「pause」);

return 0;

}

輾轉相除法求最大公約數

之前總結過一次高德納taocp中的最大公約數求解,其實課後題中的演算法修改要求實現的是輾轉相除法求解最大公約數。這個題目我最初的理解理解錯了,自然也沒有做出標準答案。現在按照標準答案的解答寫一下相應的 實現 defmaxcommdivisor m,n while m n 0 m m n if m 0...

求最大公約數 輾轉相除法

設求a和b的最大公約數c 則可看做邊長分別為a和b的矩形,可恰好被邊長為c的正方形無縫隙填滿 方法 不斷地用長邊除以短邊取餘數,直到長邊與短邊相等,即為所求正方形 給定平面上的兩個格點p1 x1,y1 p2 x2,y2 線段p1p2上,除p1和p2以外一共有幾個點。示例 p1 3,9 p2 7,1 ...

基於輾轉相除法求最大公約數

1 p 0,q 0 無最大公約數 2 p 0,q 0 最大公約數為q 3 p 0,q 0 最大公約數為p 4 p 0,q 0 最大公約數可通過輾轉相除取餘數轉化為 2 3 這樣的情況來求解 遞迴版,非遞迴用迴圈 public class euclid public static int euclid...