抖動是數字系統的訊號完整性測試的核心內容之一,是時鐘和序列訊號的最重要測量引數(注:並行匯流排的最重要測量引數是建立時間和保持時間)。
一般這樣定義抖動:「訊號的某特定時刻相對於其理想時間位置上的短期偏離為抖動」(參考:bell communicationsresearch,inc(bellcore),"synchrous optical network(sonet) transportsystems:common generic criteria, tr-253-core",issue 2, rev no.1,december 1997".如圖1所示。
其中快過10hz的偏離定義為抖動(jitter),漫過10hz的偏離定義為漂移(wander)。
圖1. 時鐘和資料抖動的定義
抖動和相位雜訊和頻率雜訊有什麼關係呢?
圖2.抖動和相位雜訊和頻率雜訊的關係
隨著訊號速率的不斷提高和對精度的越來越高要求,需要進行抖動成分的分離以更深入表徵抖動特徵和查詢問題根源。一般按圖3進行抖動成分的分離。
圖3.抖動成分分離圖
total jitter(tj):總體抖動;
random jitter(rj):隨機抖動;
deterministic jitter(dj):確定性抖動;
periodic jitter(pj):週期性抖動;
inter-symbol interference(isi):碼間干擾
duty cycle distortion(dcd):占空比失真;
sub rate jitter(srj):子速率抖動。
下面分別討論每種抖動成分的特徵和產生原因。
1、隨機抖動rj
隨機抖動是不能**的定時雜訊,因為它沒有可以識別的模式。典型的隨機雜訊例項是在無線電接收機調諧到沒有活動的載頻時聽到的聲音。儘管在理論上隨機過程具有任意概率分布,但我們假設隨機抖動呈現高斯分布,以建立抖動模型。這種假設的原因之一是,在許多電路中,隨機雜訊的主要**是熱雜訊(也稱為johnson雜訊或散粒雜訊),而熱雜訊呈現高斯分布。另乙個比較基礎的原因是,根據中心極限定理,不管各個雜訊源採用什麼分布,許多不相關的雜訊源的合成效應該接近高斯分布。高斯分布也稱為正態分佈,但它的乙個最重要的特點是:對高斯變數,它可以達到的峰值是無窮大。儘管這種隨機變數的大多數樣本將會聚集在中間值的周圍,但在理論上,任何單一的樣本,它可以偏離中間值任意大的量。所以,高斯分布都沒有峰到峰邊界值,從這種分布中的樣本數越多,所測得的峰到峰值將越大。所以,我們用stdev或rms(均方差)值來衡量隨機抖動rj。
2、確定性抖動dj
確定抖動是可以重複的、可以**的定時抖動。正因如此,這個抖動的峰到峰值具有上下限,在數量相對較少的觀察基礎上,通常可以以高置信度觀察或**其邊界。ddj和pj根據抖動特點和根本成因進一步細分了這類抖動。確定性抖動和隨機抖動在統計圖上可以用圖4形象化表示。
圖4.rj和dj在統計圖上的形象化表示
3、週期性抖動pj和子速率抖動srj
以週期方式重複的抖動稱為週期性抖動。由於任何週期波形都可以分解成傅利葉順序的諧波相關的正弦曲線,這類抖動有時稱為正弦曲線抖動。一般來說,週期性抖動與資料流中任何定期重複的碼型無關。週期性抖動一般是由耦合到系統中的外部確定性的雜訊源而引起的,如開關電源雜訊或強的區域性rf載波。時鐘恢復pll不穩定也可能會導致週期性抖動。圖5是計算機中常用的ssc(擴頻時鐘)測試結果,ssc是典型的週期性抖動。子速率抖動srj是pj的不同頻率成分,可以幫助判斷干擾源的頻率。
圖5.ssc(擴頻時鐘)是典型的週期性抖動pj
4、資料相關抖動ddj
與資料流中的位序列相關的任何抖動都稱為資料相關抖動ddj。ddj通常是由聯結器,電纜,pcb傳輸線,背板等的不足的頻響(阻抗不連續和損耗的綜合結果)引起的。不足頻寬對資料序列強烈地執行低通濾波,由於濾波,波形沒到達完全的高狀態或低狀態,除非有同極性的多個位連續出現(注:輪流的1,0,1,0,1,0屬於高頻,因為每單位區間內,訊號都發生電壓跳轉。連續的1或0,因為訊號電壓一直維持固定,所以屬於低頻)。圖6顯示了這乙個波形垂直偏置後與自己相疊加後的波形。可以看到,隨著1,0,1,0,1,0,1序列的下降跳轉,比隨著1,0,1,0,1,1,1序列的下降跳轉,跨過門限的時間較早。由於這種定時偏移是可以**的,它與跳轉前的特定資料有關,因此它屬於ddj,也稱為碼間干擾isi。
圖6.碼間干擾isi的成因圖示
5、占空比失真dcd
導致占空比失真dcd抖動的常見原因有兩個:
1.上公升沿的轉換速率與下降沿的轉換速率不同。一般判定門限位於50%幅度點,但波形的上公升時間慢,導致上公升沿跨過門限的時間比下降沿晚,結果,在眼圖上交叉點不是50%的位置,出現占空比失真抖動dcd。
2.波形的判定門限高於或低於應該值。訊號的眼圖特徵上,交叉點在50%,但是判定門限沒有設在50%幅度點上也出現占空比失真抖動dcd,統計直方圖看上去與原因1非常類似。
6、使用浴盆曲線和雙狄拉克模型預估總體抖動tj
高斯概率分布以及其峰到峰值在理論上沒有界限,把這兩項結合在一起考慮,會導致乙個有趣的想法:對包含某些高斯抖動的任何訊號,如果累計樣本的時間足夠長,眼圖應該會完全合上。那麼我們測試眼圖和抖動測試多長時間、多少樣本數比較合適?一般數字通訊的誤位元速率ber要求為1e-12時(這是序列通訊鏈路常用的誤位元速率容限規範),而示波器要捕獲這麼多資料需要的時間太長,如何保證短時間捕獲卻能得出較準確的測量結果?這就要用到浴盆曲線和雙狄拉克模型,圖7的公式即是雙狄拉克模型。
圖7.雙狄拉克模型和公式
使用示波器捕獲足夠的資料(一般不用太多,比如200k樣點),可以容易分離出rj和dj,然後通過rj和dj卷積的雙狄拉克模型,可以推算出誤位元速率和眼張開度的對應曲線,從而可以推算出不同資料量或誤位元速率對應的抖動值,如圖8所示。浴盆曲線不是測試誤位元速率的曲線,而是測試總體抖動的方法,這一點我們一定要正確理解。
圖8.通過浴盆曲線測試誤位元速率為1e-12要求下的總體抖動tj
高斯雜訊成因 抖動成分及其產生原因分析
抖動是數字系統的訊號完整性測試的核心內容之一,是時鐘和序列訊號的最重要測量引數 注 並行匯流排的最重要測量引數是建立時間和保持時間 一般這樣定義抖動 訊號的某特定時刻相對於其理想時間位置上的短期偏離為抖動 參考 bell communicationsresearch,inc bellcore syn...
高斯雜訊成因 抖動成分及其產生原因分析
抖動是數字系統的訊號完整性測試的核心內容之一,是時鐘和序列訊號的最重要測量引數 注 並行匯流排的最重要測量引數是建立時間和保持時間 一般這樣定義抖動 訊號的某特定時刻相對於其理想時間位置上的短期偏離為抖動 參考 bell communications research,inc bellcore sy...
高斯雜訊成因 相位雜訊的產生原因和影響
相位雜訊的產生原因和影響 概述相位雜訊和抖動是對同一種現象的兩種不同的定量方式。在理想情況下,乙個頻率固定 的完美的脈衝訊號 以1 mhz 為例的持續時間應該恰 好是微秒,每500ns 有乙個跳變沿。但不幸的是,這種訊號並不存在。如圖所示,訊號週期的長度總會有一定變化,從而導致 下乙個沿的到來時間不...