目標檢測演算法歷史

2021-09-22 05:48:23 字數 421 閱讀 4350

最近在做一些目標檢測相關的東西,目標檢測是計算機視覺裡面最重要的課題之一了,很多場合檢測和識別都是很重要的,比如現在很火的無人駕駛,就非常依賴目標檢測和識別,需要非常高的檢測精度和定位精度。

目標檢測從很早就開始有了。

傳統演算法的典型代表有:

haar特徵+adaboost演算法

hog特徵+svm演算法

dpm演算法

深度學習的目標檢測典型代表有:

rcnn系列,rcnn,spp-net,fast-rcnn,faster-rcnn

yolo系列,yolo和yolo9000

ssd後來有了深度殘差網路resnet之後,又出現了rfcn,還有最近的mask-rcnn等等,檢測效果越來越好,精度越來越高。

目標檢測演算法

基於深度學習的回歸方法 yolo ssd densebox 傳統目標檢測流程 rcnn解決的就是預先找出圖中目標可能出現的位置,即候選區域,再對這些區域進行識別分類。r cnn 具體步驟如下 步驟二 對該模型做fine tuning 微調 步驟三 特徵提取 步驟四 訓練乙個svm分類器來判斷這個候選...

目標檢測演算法對比 目標檢測演算法工程落地

覆盤一下在實現檢測演算法落地過程中所經歷的乙個流程 列出幾點重點說明一下 1 網路的選取和調參是關鍵 網路選取 考慮到實際情況的實時性 硬體效能,需考慮參數量較小的檢測網路,更傾向於單階段式的網路 基於yolossd等的多個變體網路 其次基礎特徵提取網路backbone的替換,傳統都是vgg的特徵提...

目標檢測演算法綜述

1.傳統的目標檢測框架,主要包括三個步驟 1 利用不同尺寸的滑動視窗框住圖中的某一部分作為候選區域 2 提取候選區域相關的視覺特徵。比如人臉檢測常用的harr特徵 行人檢測和普通目標檢測常用的hog特徵等 3 利用分類器進行識別,比如常用的svm模型 2.目標檢測領域的深度學習方法主要分為兩類 對於...