C 虛函式表詳解

2021-09-11 20:26:48 字數 4145 閱讀 5155

c++中的虛函式的作用主要是實現了多型的機制。關於多型,簡而言之就是用父型別別的指標指向其子類的例項,然後通過父類的指標呼叫實際子類的成員函式。這種技術可以讓父類的指標有「多種形態」,這是一種泛型技術。所謂泛型技術,說白了就是試圖使用不變的**來實現可變的演算法。比如:模板技術,rtti技術,虛函式技術,要麼是試圖做到在編譯時決議,要麼試圖做到執行時決議。

乙個清晰的剖析。

當然,相同的文章在網上也出現過一些了,但我總感覺這些文章不是很容易閱讀,大段大段的**,沒有,沒有詳細的說明,沒有比較,沒有舉一反三。不利於學習和閱讀,所以這是我想寫下這篇文章的原因。也希望大家多給我提意見。

言歸正傳,讓我們一起進入虛函式的世界。

虛函式表

對c++ 了解的人都應該知道虛函式(virtual function)是通過一張虛函式表(virtual table)來實現的。簡稱為v-table。在這個表中,主是要乙個類的虛函式的位址表,這張表解決了繼承、覆蓋的問題,保證其容真實反應實際的函式。這樣,在有虛函式的類的例項中這個表被分配在了這個例項的記憶體中,所以,當我們用父類的指標來操作乙個子類的時候,這張虛函式表就顯得由為重要了,它就像乙個地圖一樣,指明了實際所應該呼叫的函式。

這裡我們著重看一下這張虛函式表。c++的編譯器應該是保證虛函式表的指標存在於物件例項中最前面的位置(這是為了保證取到虛函式表的有最高的效能——如果有多層繼承或是多重繼承的情況下)。

這意味著我們通過物件例項的位址得到這張虛函式表,然後就可以遍歷其中函式指標,並呼叫相應的函式。

聽我扯了那麼多,我可以感覺出來你現在可能比以前更加暈頭轉向了。 沒關係,下面就是實際的例子,相信聰明的你一看就明白了。

假設我們有這樣的乙個類:

class base

virtual void g()

virtual void h()

按照上面的說法,我們可以通過base的例項來得到虛函式表。

下面是實際例程:

typedef void(*fun)(void); 

base b;

fun pfun = null;

// invoke the first virtual function 

pfun = (fun)*((int*)*(int*)(&b));

pfun();

實際執行經果如下:(windows xp+vs2003,  linux 2.6.22 + gcc 4.1.3)

base::f

通過這個示例,我們可以看到,我們可以通過強行把&b轉成int *,取得虛函式表的位址,然後,再次取址就可以得到第乙個虛函式的位址了,也就是base::f(),這在上面的程式中得到了驗證(把int* 強制轉成了函式指標)。通過這個示例,我們就可以知道如果要呼叫base::g()和base::h(),其**如下:

(fun)*((int*)*(int*)(&b)+0);  // base::f()

(fun)*((int*)*(int*)(&b)+1);  // base::g()

(fun)*((int*)*(int*)(&b)+2);  // base::h()

這個時候你應該懂了吧。什麼?還是有點暈。也是,這樣的**看著太亂了。沒問題,讓我畫個**釋一下。如下所示:

注意:在上面這個圖中,我在虛函式表的最後多加了乙個結點,這是虛函式表的結束結點,就像字串的結束符「/0」一樣,其標誌了虛函式表的結束。這個結束標誌的值在不同的編譯器下是不同的。在winxp+vs2003下,這個值是null。而在ubuntu 7.10 + linux 2.6.22 + gcc 4.1.3下,這個值是如果1,表示還有下乙個虛函式表,如果值是0,表示是最後乙個虛函式表。

下面,我將分別說明「無覆蓋」和「有覆蓋」時的虛函式表的樣子。沒有覆蓋父類的虛函式是毫無意義的。我之所以要講述沒有覆蓋的情況,主要目的是為了給乙個對比。在比較之下,我們可以更加清楚地知道其內部的具體實現。

下面,再讓我們來看看繼承時的虛函式表是什麼樣的。假設有如下所示的乙個繼承關係:

請注意,在這個繼承關係中,子類沒有過載任何父類的函式。那麼,在派生類的例項中,其虛函式表如下所示

對於例項:derive d; 的虛函式表如下:

我們可以看到下面幾點:

1)虛函式按照其宣告順序放於表中。

2)父類的虛函式在子類的虛函式前面。

我相信聰明的你一定可以參考前面的那個程式,來編寫一段程式來驗證。

覆蓋父類的虛函式是很顯然的事情,不然,虛函式就變得毫無意義。下面,我們來看一下,如果子類中有虛函式過載了父類的虛函式,會是乙個什麼樣子?假設,我們有下面這樣的乙個繼承關係。

我們從表中可以看到下面幾點,

1)覆蓋的f()函式被放到了虛表中原來父類虛函式的位置。

2)沒有被覆蓋的函式依舊。

這樣,我們就可以看到對於下面這樣的程式,

base *b = new derive();

b->f();

由b所指的記憶體中的虛函式表的f()的位置已經被derive::f()函式位址所取代,於是在實際呼叫發生時,是derive::f()被呼叫了。這就實現了多型。

下面,再讓我們來看看多重繼承中的情況,假設有下面這樣乙個類的繼承關係。注意:子類並沒有覆蓋父類的函式

對於子類例項中的虛函式表,是下面這個樣子:

我們可以看到:

1)  每個父類都有自己的虛表。

2)  子類的成員函式被放到了第乙個父類的表中。(所謂的第乙個父類是按照宣告順序來判斷的)

這樣做就是為了解決不同的父類型別的指標指向同乙個子類例項,而能夠呼叫到實際的函式。

下面我們再來看看,如果發生虛函式覆蓋的情況。

下圖中,我們在子類中覆蓋了父類的f()函式。

下面是對於子類例項中的虛函式表的圖:

我們可以看見,三個父類虛函式表中的f()的位置被替換成了子類的函式指標。這樣,我們就可以任一靜態型別的父類來指向子類,並呼叫子類的f()了。如:

derive d;

base1 *b1 = &d;

base2 *b2 = &d;

base3 *b3 = &d;

b1->f(); //derive::f()

b2->f(); //derive::f()

b3->f(); //derive::f() 

b1->g(); //base1::g()

b2->g(); //base2::g()

b3->g(); //base3::g()

下面是乙個關於多重繼承的虛函式表訪問的例程:

#include using namespace std;

class base1

virtual void g()

virtual void h()

};class base2

virtual void g()

virtual void h()

}; class base3

virtual void g()

virtual void h()

};class derive : public base1, public base2, public base3

virtual void g1()

};typedef void(*fun)(void);

int main()

C 虛函式和虛函式表詳解

在講解虛函式之前需要先區分一下以下定義 過載,重寫,重定義 過載 同乙個類中函式名相同,函式的引數列表不相同的兩個及兩個以上的函式就是函式過載。注意 函式的返回值不能作為函式是否過載的依據。重寫 是在子類繼承父類的時候,對父類的虛函式進行了覆蓋。重寫會使程式發生動態聯編,產生多型。重定義 是在子類繼...

C 虛函式及虛函式表詳解

多型 的關鍵在於通過基類指標或引用呼叫乙個虛函式時,編譯時不確定到底呼叫的是基類還是派生類的函式,執行時才確定。include using namespace std class a virtual void func2 class b public a int main 在 32 位編譯模式下,程...

虛函式表詳解

為了實現c 的多型,c 使用了一種動態繫結的技術。這個技術的核心是虛函式表 下文簡稱虛表 本文介紹虛函式表是如何實現動態繫結的。每個包含了虛函式的類都包含乙個虛表。我們知道,當乙個類 a 繼承另乙個類 b 時,類a會繼承類b的函式的呼叫權。所以如果乙個基類包含了虛函式,那麼其繼承類也可呼叫這些虛函式...