乙個整數n的階乘可以寫成n!,它表示從1到n這n個整數的乘積。階乘的增長速度非常快,例如,13!就已經比較大了,已經無法存放在乙個整型變數中;而35!就更大了,它已經無法存放在乙個浮點型變數中。因此,當n比較大時,去計算n!是非常困難的。幸運的是,在本題中,我們的任務不是去計算n!,而是去計算n!最右邊的那個非0的數字是多少。例如,5!=1*2*3*4*5=120,因此5!最右邊的那個非0的數字是2。再如,7!=5040,因此7!最右邊的那個非0的數字是4。再如,15!= 1307674368000,因此15!最右邊的那個非0的數字是8。請編寫乙個程式,輸入乙個整數n(0
#includeusing namespace std;
int getfactorial(int n)
result=result%1000;
//如果是對10取餘(此時result<10)
//當i * result 的結果的最右邊==0 時
//其結果的最右邊的非0的數字就不僅僅是由result決定
//比如:當i=15時 ,14!=87178291200 ; 15*12 != 15*2 }
while(result%10==0)
return result%10;
}int main()
演算法訓練 P0505
乙個整數n的階乘可以寫成n 它表示從1到n這n個整數的乘積。階乘的增長速度非常快,例如,13!就已經比較大了,已經無法存放在乙個整型變數中 而35!就更大了,它已經無法存放在乙個浮點型變數中。因此,當n比較大時,去計算n 是非常困難的。幸運的是,在本題中,我們的任務不是去計算n 而是去計算n 最右邊...
演算法訓練 P0505
乙個整數n的階乘可以寫成n 它表示從1到n這n個整數的乘積。階乘的增長速度非常快,例如,13!就已經比較大了,已經無法存放在乙個整型變數中 而35!就更大了,它已經無法存放在乙個浮點型變數中。因此,當n比較大時,去計算n 是非常困難的。幸運的是,在本題中,我們的任務不是去計算n 而是去計算n 最右邊...
演算法訓練 P0505
乙個整數n的階乘可以寫成n 它表示從1到n這n個整數的乘積。階乘的增長速度非常快,例如,13!就已經比較大了,已經無法存放在乙個整型變數中 而35!就更大了,它已經無法存放在乙個浮點型變數中。因此,當n比較大時,去計算n 是非常困難的。幸運的是,在本題中,我們的任務不是去計算n 而是去計算n 最右邊...