B樹 B 樹 B 樹 B 樹

2021-09-07 12:23:34 字數 935 閱讀 6575

**:

b樹

即二叉搜尋樹:

1.所有非葉子結點至多擁有兩個兒子(left和right);

2.所有結點儲存乙個關鍵字;

3.非葉子結點的左指標指向小於其關鍵字的子樹,右指標指向大於其關鍵字的子樹;

如:

b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麼就命中;

否則,如果查詢關鍵字比結點關鍵字小,就進入左兒子;如果比結點關鍵字大,就進入

右兒子;如果左兒子或右兒子的指標為空,則報告找不到相應的關鍵字;

如果b樹的所有非葉子結點的左右子樹的結點數目均保持差不多(平衡),那麼b樹

的搜尋效能逼近二分查詢;但它比連續記憶體空間的二分查詢的優點是,改變b樹結構

(插入與刪除結點)不需要移動大段的記憶體資料,甚至通常是常數開銷;

如:

但b樹在經過多次插入與刪除後,有可能導致不同的結構:

右邊也是乙個b樹,但它的搜尋效能已經是線性的了;同樣的關鍵字集合有可能導致不同的

樹結構索引;所以,使用b樹還要考慮盡可能讓b樹保持左圖的結構,和避免右圖的結構,也就

是所謂的「平衡」問題;      

實際使用的b樹都是在原b樹的基礎上加上平衡演算法,即「平衡二叉樹」;如何保持b樹

結點分布均勻的平衡演算法是平衡二叉樹的關鍵;平衡演算法是一種在b樹中插入和刪除結點的

策略;

B樹,B 樹,B 樹,B 樹

小彰的部落格 b樹 即二叉搜尋樹 1.所有非葉子結點至多擁有兩個兒子 left和right 2.所有結點儲存乙個關鍵字 3.非葉子結點的左指標指向小於其關鍵字的子樹,右指標指向大於其關鍵字的子樹 如 b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麼就命中 否則,如果查詢關鍵字比結點...

B樹 B 樹 B 樹 B 樹

b 樹即二叉搜尋樹 1.所有非葉子結點至多擁有兩個兒子 left 和right 2.所有結點儲存乙個關鍵字 3.非葉子結點的左指標指向小於其關鍵字的子樹,右指標指向大於其關鍵字的子樹 如 b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麼就命中 否則,如果查詢關鍵字比結點關鍵字小,就...

B樹 B 樹 B 樹 B 樹

b樹 即二叉搜尋樹 1.所有非葉子結點至多擁有兩個兒子 left和right 2.所有結點儲存乙個關鍵字 3.非葉子結點的左指標指向小於其關鍵字的子樹,右指標指向大於其關鍵字的子樹 如 b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麼就命中 否則,如果查詢關鍵字比結點關鍵字小,就進...