MapReduce 詳解Shuffle過程

2021-09-06 11:16:53 字數 323 閱讀 2717

ok,看到這裡時,大家可以先停下來想想,如果是自己來設計這段shuffle過程,那麼你的設計目標是什麼。我想能優化的地方主要在於減少拉取資料的量及盡量使用記憶體而不是磁碟。

我的分析是基於hadoop0.21.0的原始碼,如果與你所認識的shuffle過程有差別,不吝指出。我會以wordcount為例,並假設它有8個 map task和3個reduce task。從上圖看出,shuffle過程橫跨map與reduce兩端,所以下面我也會分兩部分來展開。

先看看map端的情況,如下圖:

大小: 62.2 kb

大小: 25.5 kb

大小: 209.5 kb

shuf處理文字

在cu上面看到了乙個帖子,帖子的內容即要求是 請教一下,我需要頻繁不斷地聯接9臺伺服器執行某個相同的服務。但我有特殊的要求 1。每次都按不同的順序來訪問這9臺伺服器。例如 135987642,下次又是亂序依次訪問。2。希望這9臺伺服器的主機名通過乙個shell 指令碼整合不需要另外起乙個txt文件來...

MapReduce過程詳解

1.輸入分片 input split 在進行map計算之前,mapreduce會根據輸入檔案計算輸入分片 input split 每個輸入分片 input split 針對乙個map任務。2.map階段 就是我們寫的map函式,map函式效率相對好控制,而且一般map操作都是本地化操作也就是在資料儲...

詳解MapReduce過程

textinputformat的原始碼注釋為 檢視inputformat介面的原始碼注釋我們了解到這個介面的作用為 在inputformat的源 中有如下兩個方法 inputsplit getsplits jobconf job,int numsplits throws ioexception 獲取...