機器學習 特徵選擇

2021-09-30 16:46:36 字數 259 閱讀 1326

當資料預處理完成後,我們需要選擇有意義的特徵輸入機器學習的演算法和模型進行訓練。通常來說,從兩個方面考慮來選擇特徵:

根據特徵選擇的形式又可以將特徵選擇方法分為3種:

embedded:嵌入法,先使用某些機器學習的演算法和模型進行訓練,得到各個特徵的權值係數,根據係數從大到小選擇特徵。類似於filter方法,但是是通過訓練來確定特徵的優劣。

特徵選擇主要有兩個目的:

特徵選擇:

特徵選擇常用演算法綜述:

機器學習 特徵選擇

特徵選擇是特徵工程中的重要問題 另乙個重要的問題是特徵提取 坊間常說 資料和特徵決定了機器學習的上限,而模型和演算法只是逼近這個上限而已。由此可見,特徵工程尤其是特徵選擇在機器學習中占有相當重要的地位。通常而言,特徵選擇是指選擇獲得相應模型和演算法最好效能的特徵集,工程上常用的方法有以下 1.計算每...

機器學習 特徵選擇

資料預處理完成以後,特徵比較多時,就需要對特徵進行選擇。使有意義的特徵輸入模型進行訓練。特徵選擇通常來說從兩個方面入手 特徵選擇的方法 在sklearn中可以使用feature selection庫來進行特徵選擇。2.1.1 方差選擇法 方差選擇法需要計算各特徵的方差,然後根據給定的方差閾值選擇特徵...

機器學習 特徵選擇

1 特徵選擇 特徵選擇是一種及其重要的資料預處理方法。假設你需要處理乙個監督學習問題,樣本的特徵數非常大 甚至 但是可能僅僅有少部分特徵會和對結果產生影響。甚至是簡單的線性分類,如果樣本特徵數超過了n,但假設函式的vc維確仍然是o n 那麼,除非大大擴充套件訓練集的數量,否則即會帶來過擬合的問題。在...