機器學習 過擬合的原因及解決方案

2021-09-30 01:25:39 字數 686 閱讀 2032

建模樣本抽取錯誤,包括(但不限於)樣本數量太少,抽樣方法錯誤,抽樣時沒有足夠正確考慮業務場景或業務特點等等,導致抽出的樣本資料不能有效足夠代表業務邏輯或業務場景;

樣本裡的噪音資料干擾過大,大到模型過分記住了噪音特徵,反而忽略了真實的輸入輸出間的關係;

建模時的「邏輯假設」到了模型應用時已經不能成立了。任何**模型都是在假設的基礎上才可以搭建和應用的,常用的假設包括:假設歷史資料可以推測未來,假設業務環節沒有發生顯著變化,假設建模資料與後來的應用資料是相似的,等等。如果上述假設違反了業務場景的話,根據這些假設搭建的模型當然是無法有效應用的;

引數太多、模型複雜度高;

決策樹模型。如果我們對於決策樹的生長沒有合理的限制和修剪的話,決策樹的自由生長有可能每片葉子裡只包含單純的事件資料(event)或非事件資料(no event),可以想象,這種決策樹當然可以完美匹配(擬合)訓練資料,但是一旦應用到新的業務真實資料時,效果是一塌糊塗;

神經網路模型。由於對樣本資料,可能存在隱單元的表示不唯一,即產生的分類的決策面不唯一.隨著學習的進行, bp演算法使權值可能收斂過於複雜的決策面,並至極致;權值學習迭代次數足夠多(overtraining),擬合了訓練資料中的雜訊和訓練樣例中沒有代表性的特徵.

總之:(1)增加樣本的全面性和數量;

(2)控制模型的複雜度;

(3)不要過度訓練

(4)模型融合本質上也是一種提高泛化能力的方法

過擬合(原因 解決方案 原理)

標準定義 給定乙個假設空間h,乙個假設h屬於h,如果存在其他的假設h 屬於h,使得在訓練樣例上h的錯誤率比h 小,但在整個例項分布上h 比h的錯誤率小,那麼就說假設h過度擬合訓練資料。1 建模樣本抽取錯誤,包括 但不限於 樣本數量太少,抽樣方法錯誤,抽樣時沒有足夠正確考慮業務場景或業務特點,等等導致...

機器學習問題中過擬合出現的原因及解決方案

如果一味的追求模型的 能力,所選的模型複雜度就會過高,這種現象稱為過擬合。模型表現出來的就是訓練模型時誤差很小,但在測試的時候誤差很大。一 產生的原因 1.樣本資料問題 樣本資料太少 樣本抽樣不符合業務場景 樣本中的噪音資料影響2.模型問題 模型複雜度高,引數太多 決策樹模型沒有剪紙 模型訓練過程中...

過擬合解決方案

方法一 儘量減少選取變數的數量 具體而言,我們可以人工檢查每一項變數,並以此來確定哪些變數更為重要,然後,保留那些更為重要的特徵變數。至於,哪些變數應該捨棄,我們以後在討論,這會涉及到模型選擇演算法,這種演算法是可以自動選擇採用哪些特徵變數,自動捨棄不需要的變數。這類做法非常有效,但是其缺點是當你捨...