from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import dictvectorizer
from sklearn.feature_extraction.text import countvectorizer
#sklearn 資料呼叫
def dict_demo():
#字典特徵提取
data = [,,]
#1,例項化乙個轉換器
transfer = dictvectorizer(sparse=false)
data_new=transfer.fit_transform(data)
print(「data_new: \n」,data_new)
print(「data_new: \n」, transfer.get_feature_names())
def dictvec():
dict=dictvectorizer(sparse=false)
s = [,,]
data=dict.fit_transform(s)
s = [{}]
name=dict.get_feature_names()
print(name)
print(data)
def count_demo():
#文字特徵提取
#例項化乙個轉換器類
data = ["life is short ,i like python","life is too long ,i dislike python "]
#呼叫fit_transform
transfer = countvectorizer()
datanew = transfer.fit_transform(data)
print("datanew:\n",datanew.toarray())
def count_0demo():
# 漢字文字特徵提取
# 例項化乙個轉換器類
data = ["我 愛 北 京 天 安 門", "我 愛 我 家 "]
# 呼叫fit_transform
transfer = countvectorizer()
datanew = transfer.fit_transform(data)
print("datanew:\n", datanew)
return none
ifname== 『main』:
count_demo()
sklearn學習筆記
1.波士頓房價線性回歸模型 from sklearn import datasets from sklearn.linear model import linearregression boston datasets.load boston data x boston.data y boston.t...
sklearn學習筆記
決策樹一般採用整合,具有隨機,不純度最優 from sklearn import tree from sklearn.datasets import load wine from sklearn.model selection import train test split 用於劃分訓練測試集數目 ...
sk learn 學習筆記八
感知器通常用下面的圖形表示 x1,和是輸入單元。每個輸入單元分別代表乙個特徵。感知器通常用另外乙個輸入單元代表乙個常用誤差項,但是這個輸入單元在圖形中通常被忽略了。中間的圓圈是乙個計算單元,類似神經元的細胞核。連線輸入單元和計算單元的邊類似於樹突。每條邊是乙個權重,或者是乙個引數。引數容易解釋,如果...