import torch
#張量初始化
# print ('一般性初始化:', torch.tensor([1,2,3]))
# print('隨機初始化:', torch.arange(0,4,step = 1))
# print('隨機初始化:',torch.range(0,3,step = 1))
# the step is the skipwindow
# print('隨機初始化:',torch.linspace(0,3,steps = 4))
# print('隨機初始化:',torch.logspace(0,3,steps = 4))
# the steps is numbers
# weight = torch.full((3,4), 0.6)
# # the percentage args
# print(torch.bernoulli(weight))
# # generate 0 or 1
# # weights = torch.tensor([[1,100],[100,1],[1,1]],dtype = torch.float32)
# # print (torch.mutinormal(weights,1))
# # the weight and the select times
# print('生成隨機序列:',torch.randperm(10))
# # 0 - 9 without sort tensor
# print('生成均勻分布:',torch.randint(low = 0, high = 4, size = (3, 4)))
# print('生成均勻分布:',torch.randint_like(torch.ones(3, 4), low = 0, high = 4))
# # include low but without high
# print('生成標準均勻分布:', torch.rand(3, 4))
# print('生成標準均勻分布:', torch.rand_like(torch.ones(3, 4)))
# # 0 - 1
# print('生成標準正太分布:',torch.randn(3, 4))
# print('生成標準正太分布:',torch.randn_like(torch.ones(3, 4)))
# mean = torch.tensor([1., 2.])
# std = torch.tensor([4., 2.])
# print('生成一般正態分佈:',torch.normal(mean, std))
# # notice that the mean and the std should be float
# test_tensor = torch.tensor([1,2,3,4]).reshape(1,2,2,1)
# print(test_tensor.dim())
# print(test_tensor.size())
# print(test_tensor.numel())
# 張量選擇
# tensor_to_be_selected = torch.arange(12).reshape(3, 4)
# index_selected_by = torch.tensor([0, 2])
# print ('index select:', tensor_to_be_selected.index_select(1, index_selected_by))
# # index_select dim is remain
# mask_selected_by = torch.tensor([[0, 0, 0, 1],[1, 0, 1, 0],[0, 1, 0, 0]], dtype = torch.uint8)
# print ('mask select:', tensor_to_be_selected.masked_select(mask_selected_by))
# # masked_select dim is reduced to 1
# take_selected_by = torch.tensor([2,3,4])
# print ('take select:', tensor_to_be_selected.take(take_selected_by))
# # take_select dim is reduced to 1
# print(torch.arange(4).reshape(2, 2).repeat(4, 2))
# # the result dims is (2*4,2*2)
# tensor_one = torch.tensor([[1, 2]])
# tensor_two = torch.tensor([[3, 4]])
# print(torch.cat((tensor_one, tensor_two), 0))
# # 1x2 cat 1x2 ——>2x2
# print(torch.cat((tensor_one, tensor_two), 1))
# # 1x2 cat 1x2 ——>1x4
# tensor_to_be_selected = torch.arange(12, dtype = torch.float32).reshape(3, 4)
# print(tensor_to_be_selected.reciprocal())
# print(tensor_to_be_selected.sqrt())
# print(tensor_to_be_selected.rsqrt())
# positive_tensor = torch.tensor([0.5],dtype = torch.float32)
# nagtive_tensor = torch.tensor([-0.5],dtype = torch.float32)
# print('符號函式:',torch.sign(positive_tensor), torch.sign(nagtive_tensor))
# print('絕對值函式:', torch.abs(positive_tensor), torch.abs(nagtive_tensor))
# print('向下取整:',torch.floor(positive_tensor), torch.floor(nagtive_tensor))
# print('向上取整:',torch.ceil(positive_tensor), torch.ceil(nagtive_tensor))
# print('四捨五入:',torch.round(positive_tensor), torch.round(nagtive_tensor))
# print('截斷取整:',torch.trunc(positive_tensor),torch.trunc(nagtive_tensor))
# print('取小數:',torch.frac(positive_tensor), torch.frac(nagtive_tensor))
# tensor_one = torch.tensor([1, 2, 3])
# tensor_two = torch.tensor([2, 1, 3])
# print('一維張量點積:', torch.dot(tensor_one, tensor_two))
# tensor_one = torch.arange(4).reshape(2, 2)
# tensor_two = torch.tensor([1, 2])
# print('二維點積一維:', torch.mv(tensor_one, tensor_two))
# tensor_one = torch.arange(4).reshape(2, 2)
# tensor_two = torch.tensor([[1, 2], [3, 4]])
# tensor_one = torch.arange(1, 5, dtype = torch.float32)
# print('方差:',tensor_one.var())
# print('最大值:',tensor_one.max())
# print('中位數:',tensor_one.median())
# print('乘積:',tensor_one.prod())
# print('第三大的數字是:',tensor_one.kthvalue(3))
pytorch 關於權重(初始化 固定)
emb那種可以直接from pretrained 利用requires grad false,這樣只是不更新,但是還是會計算並占用視訊記憶體 class net nn.module def init self super net,self init self.conv1 nn.conv2d 1,6,...
資料初始化
資料初始化的面試題 a 乙個類的初始化過程 b 子父類的構造執行過程 c 分層初始化 看程式寫結果 a 成員變數的問題 int x 10 成員變數是基本型別 student s new student 成員變數是引用型別 b 乙個類的初始化過程 先父後子,先靜後非靜 成員變數的初始化 預設初始化 顯...
初始化 指定初始化
id alloc 物件的誕生過程,主要是從作業系統獲得一塊足夠大的記憶體,以存放該類的全部例項變數,並將其指定為存放記憶體物件的實力變數的位置。alloc方法同時將這塊記憶體全部設定為0。結果是 bool變數初始化為no,所有的int型別變數為0,float變數為0.0,所有的指標為nil.obje...