神經網路一半包含三層,輸入層、隱含層、輸出層。如下圖所示:
現以手寫數字識別為例:
輸入為784個變數,輸出為10個節點,10個節點再通過softmax啟用函式轉化為**值。
**如下,準確率可達0.9226
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("mnist_data/", one_hot=true)
sess = tf.interactivesession()
x = tf.placeholder(tf.float32, [none, 784])
w = tf.variable(tf.zeros([784, 10]))
b = tf.variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,w) + b)
y_ = tf.placeholder(tf.float32, [none, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.gradientdescentoptimizer(0.1).minimize(cross_entropy)
tf.global_variables_initializer().run()
for i in range(10000):
batch_xs, batch_ys = mnist.train.next_batch(128)
train_step.run()
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval())
mnist手寫數字識別
import tensorflow as tf import numpy as np from tensorflow.contrib.learn.python.learn.datasets.mnist import read data sets mnist read data sets f pyth...
DNN識別mnist手寫數字
提取碼 sg3f 導庫import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers...
基於MNIST的手寫數字識別
1 mnist 資料資料集獲取 方式一 使用 tf.contrib,learn 模組載入 mnist 資料集 棄用 如下 使用 tf.contrib.learn 模組載入 mnist 資料集 deprecated 棄用 import tensorflow as tf from tensorflow....