一、知識要點:
一元二次方程和一元一次方程都是整式方程,它是初中數學的乙個重點內容,也是今後學習數學的基 礎。
一元二次方程的一般形式為:ax^2(2為次數,即x的平方)+bx+c=0, (a≠0),它是只含乙個未知數,並且未知數的最高次數是2 的整式方程。
解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法:
1、直接開平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例題精講:
1、直接開平方法:
直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)2=n (n≥0)的 方程,其解為x=±根號下n+m .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以此方程也可用直接開平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丟解)
∴x=∴原方程的解為x1=,x2=
(2)解: 9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=∴原方程的解為x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先將常數c移到方程右邊:ax2+bx=-c
將二次項係數化為1:x2+x=-
方程左邊成為乙個完全平方式:(x+ )2=
當b^2-4ac≥0時,x+ =±
∴x=(這就是求根公式)
一元二次方程
作 者 a42 覃燕玲 完成日期 2014年 10 月 25 日 版 本 號 v1.0 問題描述 建立乙個程式解平方根 輸入描述 ax 2 bx x 0 a o 程式輸出 平方根 using system using system.collections.generic using system.l...
求解一元二次方程
define crt secure no warnings 1 include include include define epsinon 0.000001 int main else else if disc 0 else system pause return 0 浮點變數與零值的比較 if ...
解一元二次方程
題目描述 求一元二次方程ax2 bx c 0的根,三個係數a,b,c由鍵盤輸入,且a不能為0,且保證b2 4ac 0。程式中所涉及的變數均為double型別。輸入 以空格分隔的一元二次方程的三個係數,雙精度double型別 輸出 分行輸出兩個根如下 注意末尾的換行 r1 第乙個根 r2 第二個根 結...