b樹
即二叉搜尋樹:
1. 所有非葉子結點至多擁有兩個兒子( left和 right);
2. 所有結點儲存乙個關鍵字;
3. 非葉子結點的左指標指向小於其關鍵 字的子樹,右指標指向大於其關鍵字的子樹;
如:
b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等, 那麼就命中;
否則,如果查詢關鍵字比結點關鍵字小,就進入左兒子;如果比結點關鍵字大,就進入
右兒子;如果左兒子或右兒子的指標為空,則報告找不到相應的關鍵字;
如果 b樹的所有非葉子結點的左右子樹的結點數目均保持差不多(平衡),那麼 b樹
的搜尋效能逼近二分查詢;但它比連續記憶體空間的二分查詢的優點是,改變 b樹結構
(插入與刪除結點)不需要移動大段的記憶體資料,甚至通常是常數開銷;
如:
但 b樹在經過多次插入與刪除後,有可能導致不同的結構:
右邊也是乙個b樹,但它的搜尋效能已經是線性的了;同樣的關鍵字集合有可能導致不同的
樹結構索引;所以,使用 b樹還要考慮盡可能讓 b樹保持左圖的結構,和避免右圖的結構,也就
是所謂的「平衡」問題;
實際使用的 b樹都是在原 b樹的 基礎上加上平衡演算法,即「平衡二叉樹」;如何保持 b樹
結點分布均勻的平衡演算法是平衡二叉樹的關鍵;平衡演算法 是一種在 b樹中插入和刪除結點的
策略;
b-樹
是一種多路搜尋樹(並不是二叉的):
1. 定義任意非葉子結點最多只有 m個兒子;且 m>2;
2. 根結點的兒子數為 [2, m];
3. 除根結點以外的非葉子結點的兒子數 為 [m/2, m];
4. 每個結點存放至少 m/2-1(取上整)和至多 m-1個關鍵字;(至少 2個關鍵字)
5. 非葉子結點的關鍵字個數 =指向兒子的指標個數 -1;
6. 非葉子結點的關鍵字: k[1], k[2], …, k[m-1];且 k[i] < k[i+1];
7. 非葉子結點的指標: p[1], p[2], …, p[m];其中 p[1]指向關鍵字小於 k[1]的
子樹, p[m]指向關鍵字大於 k[m-1]的子樹,其它 p[i]指向關鍵字屬於 (k[i-1], k[i])的子樹;
8. 所有葉子結點位於同一層;
如:( m=3)
b-樹的搜尋,從根結點開 始,對結點內的關鍵字(有序)序列進行二分查詢,如果
命中則結束,否則進入查詢關鍵字所屬範圍的兒子結點; 重複,直到所對應的兒子指標為
空,或已經是葉子結點;
b-樹的特性:
1. 關鍵字集合分布在整顆樹中;
2. 任何乙個關鍵字出現且只出現在乙個 結點中;
3. 搜尋有可能在非葉子結點結束;
4. 其搜尋效能等價於在關鍵字全集內做 一次二分查詢;
5. 自動層次控制;
由於限制了除根結點以外的非葉子結點, 至少含有 m/2個兒子,確保了結點的至少
利用率,其最底搜尋效能為:
其中, m為設定的非葉子結點最多子樹個數, n為關鍵字總數;
所以 b-樹的效能總是等價於二分查詢(與 m值無關),也就沒有 b樹 平衡的問題;
由於 m/2的限制,在插入結點時,如果結點已滿,需要將結點**為兩個各佔
m/2的結點;刪除結點時,需將兩個不足 m/2的兄弟結點合併;
b+樹
b+ 樹是 b-樹的變體,也是一種多路搜尋樹:
1. 其定義基本與 b-樹同,除了:
2. 非葉子結點的子樹指標與關鍵字個數 相同;
3. 非葉子結點的子樹指標 p[i],指向關鍵字值屬於 [k[i], k[i+1])的子樹
( b-樹是開區間);
5. 為所有葉子結點增加乙個鏈指標;
6. 所有關鍵字都在葉子結點出現;
如:( m=3)
b+的搜尋與 b-樹也基本相同,區別是 b+樹只有達到葉子結點才命中( b-樹可以在
非葉子結點命中),其效能也等價於在關鍵字全集做一次二分查詢;
b+ 的特性:
1. 所有關鍵字都出現在葉子結點的鍊錶 中(稠密索引),且鍊錶中的關鍵字恰好
是有序的;
2. 不可能在非葉子結點命中;
3. 非葉子結點相當於是葉子結點的索引 (稀疏索引),葉子結點相當於是儲存
(關鍵字)資料的資料層;
4. 更適合檔案索引系統;
b*樹
是 b+樹的變體,在 b+樹 的非根和非葉子結點再增加指向兄弟的指標;
b*樹定義了非葉子結點關鍵字個數至少為 (2/3)*m,即塊的最 低使用率為 2/3
(代替 b+樹的 1/2);
b+ 樹的**:當乙個結點滿時,分配一 個新的結點,並將原結點中 1/2的資料
複製到新結點,最後在父結點中增加新結點的指標; b+樹的**只影響原結點和父
結點,而不會影響兄弟結點,所以它不需要指向兄弟的指標;
資料移到兄弟結點中,再在原結點插入關鍵字,最後修改父結點中兄弟結點的關鍵字
(因為兄弟結點的關鍵字範圍改變了);如果兄弟也滿了,則在原結點與兄弟結點之
間增加新結點,並各複製 1/3的資料到新結點,最後在父結點增加新結點的指標;
所以, b*樹分配新結點的概率比 b+樹要低,空間使用率更高;
小結
b 樹:二叉樹,每個結點只儲存乙個關鍵 字,等於則命中,小於走左結點,大於
走右結點;
b- 樹:多路搜尋樹,每個結點儲存 m/2到 m個關鍵字,非 葉子結點儲存指向關鍵
字範圍的子結點;
所有關鍵字在整顆樹中出現,且只出現一 次,非葉子結點可以命中;
b+ 樹:在 b-樹基礎上,為葉子結點增加鍊錶指標,所有關鍵字都在葉子結點
中出現,非葉子結點作為葉子結點的索引; b+樹總是到葉子結點才命中;
b* 樹:在 b+樹基礎上,為非葉子結點也增加鍊錶指標,將結點的最低利用率
從 1/2提高到 2/3;
B樹,B 樹,B 樹,B 樹
小彰的部落格 b樹 即二叉搜尋樹 1.所有非葉子結點至多擁有兩個兒子 left和right 2.所有結點儲存乙個關鍵字 3.非葉子結點的左指標指向小於其關鍵字的子樹,右指標指向大於其關鍵字的子樹 如 b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麼就命中 否則,如果查詢關鍵字比結點...
B樹 B 樹 B 樹 B 樹
b 樹即二叉搜尋樹 1.所有非葉子結點至多擁有兩個兒子 left 和right 2.所有結點儲存乙個關鍵字 3.非葉子結點的左指標指向小於其關鍵字的子樹,右指標指向大於其關鍵字的子樹 如 b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麼就命中 否則,如果查詢關鍵字比結點關鍵字小,就...
B樹 B 樹 B 樹 B 樹
b樹 即二叉搜尋樹 1.所有非葉子結點至多擁有兩個兒子 left和right 2.所有結點儲存乙個關鍵字 3.非葉子結點的左指標指向小於其關鍵字的子樹,右指標指向大於其關鍵字的子樹 如 b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麼就命中 否則,如果查詢關鍵字比結點關鍵字小,就進...