hadoop作業執行部分原始碼

2021-08-25 18:46:09 字數 3317 閱讀 2439

map-reduce的過程首先是由客戶端提交乙個任務開始的。

提交任務主要是通過jobclient.runjob(jobconf)靜態函式實現的:

public static runningjob runjob(jobconf job) throws ioexception finally finally finally

//建立reduce task

this.reduces = new taskinprogress[numreducetasks];

for (int i = 0; i < numreducetasks; i++) else if (action instanceof committaskaction) else else else finally else else finally finally while (kvfull);

} finally catch (mapbuffertoosmallexception e) else {

combinecollector.setwriter(writer);

combineandspill(kviter, combineinputcounter);

reducetask的run函式如下:

public void run(jobconf job, final taskumbilicalprotocol umbilical)

throws ioexception {

job.setboolean("mapred.skip.on", isskipping());

//對於reduce,則包含三個步驟:拷貝,排序,reduce

if (ismaporreduce()) {

copyphase = getprogress().addphase("copy");

sortphase  = getprogress().addphase("sort");

reducephase = getprogress().addphase("reduce");

startcommunicationthread(umbilical);

final reporter reporter = getreporter(umbilical);

initialize(job, reporter);

//copy階段,主要使用reducecopier的fetchoutputs函式獲得map的輸出。建立多個執行緒mapoutputcopier,其中copyoutput進行拷貝。

boolean islocal = "local".equals(job.get("mapred.job.tracker", "local"));

if (!islocal) {

reducecopier = new reducecopier(umbilical, job);

if (!reducecopier.fetchoutputs()) {

copyphase.complete();

//sort階段,將得到的map輸出合併,直到檔案數小於io.sort.factor時停止,返回乙個iterator用於訪問key-value

setphase(taskstatus.phase.sort);

statusupdate(umbilical);

final filesystem rfs = filesystem.getlocal(job).getraw();

rawkeyvalueiterator riter = islocal

? merger.merge(job, rfs, job.getmapoutputkeyclass(),

job.getmapoutputvalueclass(), codec, getmapfiles(rfs, true),

!conf.getkeepfailedtaskfiles(), job.getint("io.sort.factor", 100),

new path(gettaskid().tostring()), job.getoutputkeycomparator(),

reporter)

: reducecopier.createkviterator(job, rfs, reporter);

mapoutputfilesondisk.clear();

sortphase.complete();

//reduce階段

setphase(taskstatus.phase.reduce);

reducer reducer = reflectionutils.newinstance(job.getreducerclass(), job);

class keyclass = job.getmapoutputkeyclass();

class valclass = job.getmapoutputvalueclass();

reducevaluesiterator values = isskipping() ?

new skippingreducevaluesiterator(riter,

job.getoutputvaluegroupingcomparator(), keyclass, valclass,

job, reporter, umbilical) :

new reducevaluesiterator(riter,

job.getoutputvaluegroupingcomparator(), keyclass, valclass,

job, reporter);

//逐個讀出key-value list,然後呼叫reducer的reduce函式

while (values.more()) {

reduceinputkeycounter.increment(1);

reducer.reduce(values.getkey(), values, collector, reporter);

values.nextkey();

values.informreduceprogress();

reducer.close();

out.close(reporter);

done(umbilical);

map-reduce的過程總結如下圖:

綠色通道:

好文要頂

關注我收藏該文

與我聯絡

hadoop 原始碼筆記

public inte ce tool extends configurable public int run string args throws exception public static void main string args throws exception toolrunner執行...

Hadoop原始碼結構

hadoop專案已經得到社群以及行業內很多大牛的貢獻,現在版本已經推進到了1.0.0版本,本人以後將就當前1.0.0版本進行原始碼分析,如有重大特性更新的版本發布,會有相關的原始碼增補分析,多謝!bin 此目錄下為進行hadoop配置 執行以及管理的shell命令集合 c 此目錄下為linux下am...

ArrayList部分原始碼

預設初始容量 private static final int default capacity 10 空陣列,有參建構函式,引數為0時,將elementdata陣列賦值為empty elementdata private static final object empty elementdata ...