機器學習(介紹)

2021-08-22 14:49:32 字數 763 閱讀 3015

"a computer program is said to learn from experienceewith respect to some class of taskstand performance measurep, if its performance at tasks int, as measured byp, improves with experiencee."

example: playing checkers.

e= the experience of playing many games of checkers

t= the task of playing checkers.

p= the probability that the program will win the next game.

機器學習就是從經驗e中學習,完成任務t,p是完成效果

有標籤1、線性回歸

2、分類

無標籤1、盲目分類

用訓練集通過學習演算法,得到乙個假設函式,輸入x**y

假設函式:hθ(x)=θ0+θ1x

機器學習介紹

本文主要參考scikit learn機器學習 常用演算法原理及程式設計實踐 原始碼連線 本文包括 介紹機器學習應用,機器學習的分類,機器學習開發的典型步驟 得益於摩爾定律,計算機硬體 cpu gpu 為很多通過大量資料學習的演算法提供很好的條件,這類演算法稱為機器學習演算法。傳統演算法 資料 人工設...

機器學習介紹

機器學習是一種能夠賦予機器學習的能力以此讓它完成直接程式設計無法完成的功能的方法。但從實踐的意義上來說,機器學習是一種通過利用資料,訓練出模型,然後使用模型 的一種方法。機器學習界的乙個特色就是演算法眾多,發展百花齊放。以下六個演算法是使用最多,影響最廣 按照訓練的資料有無標籤,可以將上面演算法分為...

機器學習介紹

機器學習面對的是高度不確定的世界中的問題e.g.傳統垃圾郵件分類問題 傳統解決思路 設定規則,定義 垃圾郵件 讓計算機去執行規則。問題 對很多問題規則難以定義,比如識別乙隻貓或人臉識別。且規則總在不斷變化。新思路 借鑑人類學習的過程,資料 學習歸納總結 知識經驗積累 對類似問題做出正確反應 機器學習...