/在進行這方面學習工作的時候,在網上蒐集到了很多的資料與部落格,之前一直把學習的筆記存放在有道雲裡,最近決定還是想要整理成部落格所以接下來會一直把我之前的機器學習、深度學習、強化學習的相關知識和自己的經驗整理成部落格陸續更新/
深度學習是基於神經網路的研究,含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現資料的分布式特徵表示。
深度學習是機器學習中一種基於對資料進行表徵學習的方法。觀測值(例如一幅影象)可以使用多種方式來表示,如每個畫素強度值的向量,或者更抽象地表示成一系列邊、特定形狀的區域等。而使用某些特定的表示方法更容易從例項中學習任務(例如,人臉識別或面部表情識別)。深度學習的好處是用非監督式或半監督式的特徵學習和分層特徵提取高效演算法來替代手工獲取特徵。
通俗的來講,所謂的提取特徵就是找到資料中的規律,網路中學習到的引數都是權重,被用來擬合出一條多維空間的曲線。
同機器學習方法一樣,深度機器學習方法也有監督學習與無監督學習之分.不同的學習框架下建立的學習模型很是不同.例如,卷積神經網路(convolutional neural networks,簡稱cnns)就是一種深度的監督學習下的機器學習模型,而深度置信網(deep belief nets,簡稱dbns)就是一種無監督學習下的機器學習模型。
上圖所示是各種神經網路所適合的對應任務:
標準神經網snn 卷積神經網路cnn 迴圈神經網路rnn例項對比
上面的幾張圖都是**於吳恩達大佬的ppt上
隨著資料規模的增長網路深度越深最終的效果會越好
紅色的線是傳統的機器學習演算法(svm)然後網上是從小到大的網路規模
機器學習,深度學習,神經網路,深度神經網路
先來說一下這幾者之間的關係 人工智慧包含機器學習,機器學習包含深度學習 是其中比較重要的分支 深度學習源自於人工神經網路的研究,但是並不完全等於傳統神經網路。所以深度學習可以說是在傳統神經網路基礎上的公升級。神經網路一般有輸入層 隱藏層 輸出層,一般來說隱藏層大於2的神經網路就叫做深度神經網路,深度...
深度學習入門系列 神經網路
機器學習 定義 機器學習 machine learning,ml 是一門多領域交叉學科,涉及概率論 統計學 逼近論 凸分析 演算法複雜度理論等多門學科。專門研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的效能。分類 根據訓練集是否標註,9可以把機...
深度學習 深度神經網路
神經網路是由乙個個神經元相互連線並按層次排列構成的,深度神經網路是有任意層的神經網路,這裡的深度是指層次的多,而不是神經元數量的多。有任意層,那麼就要有乙個迴圈來負責遍歷每一層進行計算。所以深度神經網路的計算形式,就必須要適應這個迴圈結構。我們先來說說神經元吧 對於多神經元神經網路,其實也是一樣的。...