拉格朗日乘子法和KKT條件求解最優化方法

2021-08-19 22:18:29 字數 521 閱讀 2611

在求取有約束條件的優化問題時,拉格朗日乘子法 和kkt條件是非常重要的兩個求取方法,對於等式約束的優化問題,可以應用拉格朗日乘子法去求取最優值;如果含有不等式約束,可以應用kkt條件去求取。當然,這兩個方法求得的結果只是必要條件,只有當是凸函式的情況下,才能保證是充分必要條件。kkt條件是拉格朗日乘子法的泛化。

通常我們需要求解的最優化問題有如下幾類:

(i) 無約束優化問題。

min f(x);  

這是最簡單的情況,解決方法通常是函式對變數求導,令求導函式等於0的點可能是極值點,如果是凸函式,可以保證是最優解。

(ii) 有等式約束的優化問題,常常使用的方法就是拉格朗日乘子法。

(iii) 有不等式約束的優化問題,常常使用的方法就是kkt條件。

拉格朗日乘子法和KKT條件

深入理解拉格朗日乘子法 lagrange multiplier 和kkt條件 在求取有約束條件的優化問題時,拉格朗日乘子法 lagrange multiplier 和kkt 條件是非常重要的兩個求取方法,對於等式約束的優化問題,可以應用拉格朗日乘子法去求取最優值 如果含有不等式約束,可以應用 kkt...

拉格朗日乘子法和KKT條件

拉格朗日乘子法 lagrange multiplier 和kkt karush kuhn tucker 條件是求解約束優化問題的重要方法,在有等式約束時使用拉格朗日乘子法,在有不等約束時使用kkt條件。前提是 只有當目標函式為凸函式時,使用這兩種方法才保證求得的是最優解。對於無約束最優化問題,有很多...

拉格朗日乘子法和KKT條件

拉格朗日乘子法 lagrange multiplier 和kkt karush kuhn tucker 條件是求解約束優化問題的重要方法,在有等式約束時使用拉格朗日乘子法,在有不等約束時使用kkt條件。前提是 只有當目標函式為凸函式時,使用這兩種方法才保證求得的是最優解。對於無約束最優化問題,有很多...