第五周。
本次由於不確定網路型別,本次選用googlenetv2,alexnet,darknet19三種網路模型
由於darknet缺少某些功能,本次識別採用caffe。
caffe的高效能伺服器的配置。
tar -xvf opencv.tar.gz
mkdir build
cmake -d cmake_build_type=release -d cmake_install_prefix=/path/to/local ..
make -j24&&make install
tar -zvf boost.tar.gz
./bootstrap.sh
./b2
cp ./lib/* /path/to/local/lib
cp -rf *8 /path/to/local
tar -zvf leveldb.tar.gz
make
cp out-shared/* /path/to/local
cp out-static/* /path/to/local
cp -rf include /path/to/local
tar -zvf g***s.tar.gz
mkdir build&&cd build
cmake -d cmake_build_type_release -d cmake_install_prefix=/path/to/local ..
make&&make install
tar -xvf glog.tz
mkdir build
cd build
cmake -d cmake_build_type_release -d cmake_install_prefix=/path/to/local ..
make&&make install
unzip python.zip
./configure --prefix=/path/to/local
make&&make install
編輯~/.bashrc
新增
export $path=/path/to/local/bin:$path
export $ld_library_path=/path/to/local/include:$ld_library_path
source ~/.bashrc
python --version
若python為2.7則為正確版本
pip安裝:
tar -xvf pip.tar
python setup.py install
pip install numpy
unzip openblas.zip
mkdir build
cd build
cmake -d build_type_release -d cmake_install_prefix=/path/to/local ..
make&&make install
mkdir build
cd build
cmake -d build_type_release -d cmake_install_refix=/path/to/local ..
make&&make install
make
mv mdb/libraries/liblmdb/*so* /path/to/local/lib
mv mdb/libraries/liblmdb/*.h /path/to/local/include
./configure --prefix=/path/to/local
make&&make install
./configure --prefix=/path/to/local
make&&make install
tar -xvf cmake-3.6.tar.gz
mv bin/* /path/to/local/bin
tar -xvf cudnn.bz2
cp include/* /path/to/local/include
cp lib64/* /path/to/local/include
環境變數配置
export path=$home/cmake-3.6/bin:$path
#export path=$home/gcc-build-4.9.4/bin:$path
export path=$home/cuda-7.5/bin:$path
export path=$home/opencv6/bin:$path
export path=$home/opencv6/include:$path
export path=$home/local/bin:$path
export path=$home/local/include:$path
export path=$home/.local/bin:$path
export ld_library_path=$home/cuda-7.5/lib64:$ld_library_path
export ld_library_path=$home/cuda-7.5/lib:$ld_library_path
export ld_library_path=$home/local/lib:$ld_library_path
export ld_library_path=$home/local/lib64:$ld_library_path
export ld_library_path=$home/.local/lib:$ld_library_path
#export ld_library_path=$home/cuda/lib64:$ld_library_path
#export ld_library_path=$home/cuda/include:$ld_library_path
export ld_library_path=$home/opencv6/lib:$ld_library_path
export pkg_config_path=$home/opencv6/lib/pkgconfig:$pkg_config_path
export pkg_config_path=$home/local/lib/pkgconfig:$pkg_config_path
export pkg_config_path=$home/local/lib64/pkgconfig:$pkg_config_path
source ~/.bashrc
配置caffe
cp makefile.config.example makefile.config
use_cudnn := 1前注釋去掉
更改cuda_dir:
cuda_dir := /home/users/zibojia/cuda-7.5
在 -gencode arch=compute_60,code=sm_60 \,
-gencode arch=compute_61,code=sm_61 \,
-gencode arch=compute_61,code=compute_61前面新增注釋
更改blas
blas := open
更改python_include和python_lib:
python_include := /home/users/zibojia/local/include/python2.7 \
/home/users/zibojia/.local/lib/python2.7/site-packages/numpy/core/include
python_lib := /home/users/zibojia/local/lib
更改include_dirs:
include_dirs := $(python_include) /home/users/zibojia/local/include /home/users/zibojia/opencv6/include /home/users/zibojia/cuda-7.5/include
library_dirs := $(python_lib) /home/users/zibojia/local/lib /home/users/zibojia/opencv6/lib /home/users/zibojia/cuda-7.5/lib
編譯
make all -j100
make test
make runtest
人臉表情識別
首先我們來了解一下表情識別的相關背景知識以及發展近況。人臉表情是最直接 最有效的情感識別模式。它有很多人機互動方面的應用,例如疲勞駕駛檢測和手機端實時表情識別。早在20世紀ekman等專家就通過跨文化調研提出了七類基礎表情,分別是生氣,害怕,厭惡,開心,悲傷,驚訝以及中立。然而不斷的研究發現這七類基...
人臉識別面部表情
import dlib 人臉識別的庫dlib import numpy as np 資料處理的庫numpy import cv2 影象處理的庫opencv class face emotion def init self 使用特徵提取器get frontal face detector self.d...
輕量化人臉表情識別
1 引言 1.1應用價值 人臉表情識別在人機互動 教育 安防 輔助駕駛 廣告等領域均有廣泛應用,是乙個很有發展前景的方向。目前,僅針對人臉識別的技術相對成熟,表情識別還有很大市場,接下來需要做的是將表情識別運用到實際場景中,將其與現實需求進行良好結合。例如在遊戲製作上面,可以根據人類情感做出實時反映...