decisoin tree:
# -*- coding: utf-8 -*-結果:輸出的準確度importsklearn
fromsklearnimporttree
importmatplotlib.pyplotasplt
fromsklearn.model_selectionimporttrain_test_split
fromsklearnimportdatasets
importpandasaspd
importnumpy
defgetdata_1():
iris = datasets.load_iris()
x = iris.data #樣本特徵矩陣,150*4矩陣,每行乙個樣本,每個樣本維度是4
y = iris.target #樣本類別矩陣,150維行向量,每個元素代表乙個樣本的類別
df1=pd.dataframe(x, columns =['sepallengthcm','sepalwidthcm','petallengthcm','petalwidthcm'])
df1['target']=y
returndf1
df=getdata_1()
x_train, x_test, y_train, y_test = train_test_split(df.iloc[:,0:3],df['target'], test_size=0.3, random_state=42)
printx_train, x_test, y_train, y_test
model = tree.decisiontreeclassifier(criterion='gini') #cart樹
model.fit(x_train, y_train)
model2= tree.decisiontreeclassifier(criterion='entropy') #c4.5樹
model2.fit(x_train, y_train)
print'cart樹:'.format(model.score(x_test, y_test)) # 決策樹
print'c4.5樹::'.format(model2.score(x_test, y_test))
# -*- coding: utf-8 -*-importsklearn
fromsklearn.datasets.samples_generatorimportmake_classification
fromsklearn.linear_modelimportlinearregression
importmatplotlib.pyplotasplt
fromsklearn.model_selectionimporttrain_test_split
x, y = make_classification(n_samples=2400, n_features=5, n_informative=2,
n_redundant=2, n_classes=2, n_clusters_per_class=2, scale=1.0,
random_state=20)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
model = linearregression(fit_intercept=true, normalize=false,
copy_x=true, n_jobs=1)
model.fit(x_train, y_train)
print'finish'printmodel.score(x_train, y_train) # 線性回歸:r square; 分類問題: acc
printmodel.score(x_test, y_test)
printx_train,y_train
printx_test,y_test
sklearn 決策樹學習筆記
遍歷眾多特徵,計算每一次分類後的資訊增益,選取分類後熵值最小的特徵作為當前分類節點 防止過擬合,當每個資料都是乙個葉結點的時候,分類正確率是100 但是樹過於龐大。from sklearn.datasets.california housing import fetch california hou...
SKlearn之決策樹
決策樹是一種非引數的監督學習方法。模組 sklearn.tree sklearn建模的步驟 1 選擇並建立模型 例 clf tree.decisiontreeclassifier 2 提供資料訓練模型 例 clf clf.fit x train,y train 3 獲取需要的資訊 例 result ...
sklearn機器學習 決策樹
tree.decisiontreeclassifier 分類樹 tree.decisiontreeregressor 回歸樹 tree.export graphviz 將生成的決策樹匯出為dot格式,畫圖專用 from sklearn import tree 匯入需要的模組 clf tree.dec...