目前主流的目標檢測演算法主要是基於深度學習模型,其可以分成兩大類:
(1)two-stage檢測演算法,其將檢測問題劃分為兩個階段,首先產生候選區域(region proposals),然後對候選區域分類(一般還需要對位置精修),這類演算法的典型代表是基於region proposal的r-cnn系演算法,如r-cnn,fast r-cnn,faster r-cnn等;
(2)one-stage檢測演算法,其不需要region proposal階段,直接產生物體的類別概率和位置座標值,比較典型的演算法如yolo和ssd。目標檢測模型的主要效能指標是檢測準確度和速度,對於準確度,目標檢測要考慮物體的定位準確性,而不單單是分類準確度。一般情況下,two-stage演算法在準確度上有優勢,而one-stage演算法在速度上有優勢。不過,隨著研究的發展,兩類演算法都在兩個方面做改進。
基於深度學習的 目標檢測 演算法綜述
三部曲,這樣就有兩個難以解決的問題 其一是區域選擇的策略效果差 時間複雜度高 其二是手工提取的特徵魯棒性較差。傳統的區域選擇使用滑窗,每滑乙個視窗檢測一次,相鄰視窗資訊重疊高,檢測速度慢。r cnn 使用乙個啟發式方法 selective search 先生成候選區域再檢測,降低資訊冗餘程度,從而提...
基於深度學習的水下目標檢測
瀏覽到某博主關於參賽經歷的文章,原文請檢視 以下為個人思考 深度學習和目標檢測大家都了解,針對 水下 目標,從資料處理到訓練可以有各種各樣的方法來提高效果或效率。一 資料預處理 對影象資料進行預處理,能改善其特徵,影響目標檢測的效果。例如資料增強randombrightnesscontrast cl...
深度學習目標檢測
流程狂徒如下 1 使用selective search提取proposes,然後利用cnn等識別技術進行分類。2 使用識別庫進行預訓練,而後用檢測庫調優引數。3 使用svm代替了cnn網路中最後的softmax,同時用cnn輸出的4096維向量進行bounding box回歸。4 流程前兩個步驟 候...