程式原始碼:
# -*- encoding=utf-8 -*-
from numpy import genfromtxt
import numpy as np
import random
import sys
import csv
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn import preprocessing
reload(sys)
sys.setdefaultencoding("utf-8")
datapath = r"./bb.csv"
num_epochs1 = 10
rows = 100
turn = 2000
def read_data(file_queue):
#定義reader
reader = tf.textlinereader(skip_header_lines=1)
key, value = reader.read(file_queue)
#定義decoder
#defaults用於指定矩陣格式以及資料型別,csv檔案中的矩陣是m*n的,則此處為1*n的矩陣,比如矩陣中如果有小數,則為float,[1]應該變為[1.0]
defaults = [[''], ['null'], [''], [0.], [0.], [0.], [0.], [0], [""], [0], ['null'], [""]]
#矩陣中有幾列,有幾列需要寫幾個
city, origin, destination, origin_lat, origin_lng, destination_lat, destination_lng, \
distance, weature, duration, week_time, create_time = tf.decode_csv(records=value, record_defaults=defaults)
#return tf.stack([sepallengthcm, sepalwidthcm, petallengthcm, petalwidthcm]), preprocess_op
return distance, duration
def batch_input(filename, num_epochs):
#生成乙個先入先出佇列和乙個queuerunner
file_queue = tf.train.string_input_producer(string_tensor=[filename], num_epochs=10)
example, label = read_data(file_queue)
min_after_dequeue = 100
batch_size = 10
capacity = min_after_dequeue+3*batch_size
example_batch, label_batch = tf.train.shuffle_batch([example, label], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
return example_batch, label_batch
#examplebatch1, labelbatch1 = batch_input(datapath, num_epochs=100)
with tf.session() as sess:
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
examplebatch1, labelbatch1 = batch_input(datapath, num_epochs=100)
coord = tf.train.coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
while not coord.should_stop():
example_batch, label_batch = sess.run([examplebatch1, labelbatch1])
print("example_batch is:")
print(example_batch)
except tf.errors.outofrangeerror:
print('done training -- epoch limit reached')
finally:
coord.request_stop()
coord.join(threads)
以上程式完成的功能是批量獲得csv檔案中的資料,但在執行時出現以下錯誤:
file "better_nonlinear_one_input_batch1.py", line 64, in
coord.join(threads)
file "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/coordinator.py", line 389, in join
six.reraise(*self._exc_info_to_raise)
file "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/queue_runner_impl.py", line 238, in _run
enqueue_callable()
file "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1231, in _single_operation_run
target_list_as_strings, status, none)
file "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/errors_impl.py", line 473, in __exit__
c_api.tf_getcode(self.status.status))
tensorflow.python.framework.errors_impl.failedpreconditionerror: attempting to use uninitialized value input_producer/limit_epochs/epochs
[[node: input_producer/limit_epochs/countupto = countupto[t=dt_int64, _class=["loc:@input_producer/limit_epochs/epochs"], limit=10, _device="/job:localhost/replica:0/task:0/device:cpu:0"](input_producer/limit_epochs/epochs)]]
上網查詢類似錯誤,得到的結果都說要加入初始化,即以下兩行:
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
但實際上**中已經加入了這2行**,問題依然存在。一時一頭霧水,懷疑難道是例程都存在問題?決定一點一點查詢原因,在這裡要感謝
如果沒有它提供的程式,我可能還在苦苦摸索。此網頁中作者也是和我遇到了相同的問題,但是他的程式加入上述2句程式後就正常執行了。深入細節,一句一句查詢區別,最終定位了問題:上邊源程式中有這樣一行**:
examplebatch1, labelbatch1 = batch_input(datapath, num_epochs=100),
其位置很關鍵,將上邊貼的源程式中
examplebatch1, labelbatch1 = batch_input(datapath, num_epochs=100)這句話放到
with tf.session() as sess:
之上,就不會報錯(參見上述源**中兩個examplebatch1, labelbatch1 = batch_input(datapath, num_epochs=100)的位置),我最初是放到了裡邊,這樣就產生了所遇到的詭異問題。
Tensorflow實戰 張量
import tensorflow as tf tf.constant 是乙個計算,這個計算的結果為乙個張量,儲存在變數a中。a tf.constant 1.0,2.0 name a b tf.constant 2.0,3.0 name b result tf.add a,b,name add pr...
TensorFlow除錯技巧
tensorflow從誕生以來就一直在深度學習框架中穩居老大的位置,雖然自從2018年12月pytorch 1.0 stable版本正式發布以來,很快減小了差距,但是也難以超越。tensorflow的強項在於部署 包括tensorflow lite在移動端部署 和執行效率,另外對各種operatio...
tensorflow實戰 反向傳播
windows10 anaconda3 64位 batch size 8 每次訓練的資料量 seed 23455 隨機種子 rng np.random.randomstate seed x rng.rand 32,2 產生32行2列的隨機矩陣 y int x0 x1 1 for x0,x1 in x...