時間複雜度的計算

2021-08-13 20:35:51 字數 3683 閱讀 4002

首先了解一下幾個概念。乙個是時間複雜度,乙個是漸近時間複雜度。前者是某個演算法的時間耗費,它是該演算法所求解問題規模n的函式,而後者是指當問題規模趨向無窮大時,該演算法時間複雜度的數量級。 

當我們評價乙個演算法的時間效能時,主要標準就是演算法的漸近時間複雜度,因此,在演算法分析時,往往對兩者不予區分,經常是將漸近時間複雜度t(n)=o(f(n))簡稱為時間複雜度,其中的f(n)一般是演算法中頻度最大的語句頻度。

此外,演算法中語句的頻度不僅與問題規模有關,還與輸入例項中各元素的取值相關。但是我們總是考慮在最壞的情況下的時間複雜度。以保證演算法的執行時間不會比它更長。

常見的時間複雜度,按數量級遞增排列依次為:常數階o(1)、對數階o(log2n)、線性階o(n)、線性對數階o(nlog2n)、平方階o(n^2)、立方階o(n^3)、k次方階o(n^k)、指數階o(2^n)。

下面我們通過例子加以說明,讓大家碰到問題時知道如何去解決。

1、設三個函式f,g,h分別為 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn 

請判斷下列關係是否成立:

(1) f(n)=o(g(n)) 

(2) g(n)=o(f(n)) 

(3) h(n)=o(n^1.5)

(4) h(n)=o(nlgn)

這 裡我們複習一下漸近時間複雜度的表示法t(n)=o(f(n)),這裡的"o"是數學符號,它的嚴格定義是"若t(n)和f(n)是定義在正整數集合上的 兩個函式,則t(n)=o(f(n))表示存在正的常數c和n0 ,使得當n≥n0時都滿足0≤t(n)≤c?f(n)。"用容易理解的話說就是這兩個函式當整型自變數n趨向於無窮大時,兩者的比值是乙個不等於0的常 數。這麼一來,就好計算了吧。

◆ (1)成立。題中由於兩個函式的最高次項都是n^3,因此當n→∞時,兩個函式的比值是乙個常數,所以這個關係式是成立的。 

◆ (2)成立。與上同理。

◆ (3)成立。與上同理。

◆ (4)不成立。由於當n→∞時n^1.5比nlgn遞增的快,所以h(n)與nlgn的比值不是常數,故不成立。

2、設n為正整數,利用大"o"記號,將下列程式段的執行時間表示為n的函式。

(1) i=1; k=0 

while(i1 

while (x>=(y+1)*(y+1))

y++;

解答:t(n)=n1/2 ,t(n)=o(n1/2), 最壞的情況是y=0,那麼迴圈的次數是n1/2次,這是乙個按平方根階遞增的函式。

(3) x=91; y=100; 

while(y>0)

if(x>100)

else x++;

解答: t(n)=o(1), 這個程式看起來有點嚇人,總共迴圈執行了1000次,但是我們看到n沒有? 沒。這段程式的執行是和n無關的,就算它再迴圈一萬年,我們也不管他,只是乙個常數階的函式。

乙個經驗規則

有如下複雜度關係

c < log2n < n < n * log2n < n^2 < n^3 < 2^n < 3^n < n!

其中c是乙個常量,如果乙個演算法的複雜度為c 、 log2n 、n 、 n*log2n ,那麼這個演算法時間效率比較高 ,如果是 2^n , 3^n ,n!,那麼稍微大一些的n就會令這個演算法不能動了,居於中間的幾個則差強人意。

時間複雜度的計算範例

時間複雜度:演算法中基本操作重複執行的次數是問題規模n的某個函式f(n),t(n)=o(f(n))。它表示隨問題規模n的增大,演算法執行時間的增長率和f(n)的增長率相同。

語句的頻度:是該語句重複執行的次數。

例1:交換i和j的內容。

temp=i; i=j; j=temp;

以上三條語句的頻度均為1,該程式的執行時間是與問題規模n無關的常數,因此演算法的時間複雜度為常數階,記作t(n)=o(1)。

例2:變數計數。

(1)x=0;y=0;

(2)for(k=1;k<=n;k++)

(3)  x++;

(4)for(i=1;i<=n;i++)

(5)  for(j=1;j<=n;j++)

(6)     y++;

以上語句中頻度最大的語句是(6),其頻度為f(n)= n2,所以該程式段的時間複雜度為t(n)=o(n2)

例3:求兩個n階方陣的乘積c=a×b,其演算法如下:

#define n 100

void matrixmultiply(int a[n][n],int b[n][n],int c[n][n])

}t(n)=2n3+3n2+2n+1

lim(t(n)/ n3)=2 

t(n)=o(n3)

例4: 

(1)(2)for (i=1;i<=n;++i)

(3)for (j=1;j<=n;++j)

(4)    for (k=1;k<=n;k++)

(5) i=1; while(i<=n) i=i*2;執行次數f(n)與n的關係是n=2^f(n)

含基本操作「x增1」的語句的頻度分別為1,n,n2和log2n

常見的時間複雜度,按數量級遞增排列依次為:常數階o(1),對數階0(log2n),線性階o(n),線性對數階0(nlog2n),平方階o(n2),立方階0(n3),指數階o(2n)。通常認為,具有指數階量級的演算法是實際不可計算的,而量級低於平方階的演算法是高效的。

演算法的時間複雜度

定義:如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t(n),它是n的某一函式 t(n)稱為這一演算法的「時間複雜性」。

當輸入量n逐漸加大時,時間複雜性的極限情形稱為演算法的「漸近時間複雜性」。

我們常用大o表示法表示時間複雜性,注意它是某乙個演算法的時間複雜性。大o表示只是說有上界,由定義如果f(n)=o(n),那顯然成立f(n)=o(n^2),它給你乙個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。

此外,乙個問題本身也有它的複雜性,如果某個演算法的複雜性到達了這個問題複雜性的下界,那就稱這樣的演算法是最佳演算法。

「大o記法」:在這種描述中使用的基本引數是 n,即問題例項的規模,把複雜性或執行時間表達為n的函式。這裡的「o」表示量級 (order),比如說「二分檢索是 o(logn)的」,也就是說它需要「通過logn量級的步驟去檢索乙個規模為n的陣列」記法 o ( f(n) )表示當 n增大時,執行時間至多將以正比於 f(n)的速度增長。

這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,乙個低附加代價的o(n2)演算法在n較小的情況下可能比乙個高附加代價的 o(nlogn)演算法執行得更快。當然,隨著n足夠大以後,具有較慢上公升函式的演算法必然工作得更快。 

o(1)

temp=i;i=j;j=temp;                     

以上三條單個語句的頻度均為1,該程式段的執行時間是乙個與問題規模n無關的常數。演算法的時間複雜度為常數階,記作t(n)=o(1)。如果演算法的執行時 間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是乙個較大的常數。此類演算法的時間複雜度是o(1)。 

o(n^2)

2.1. 交換i和j的內容

sum=0;                 (一次)

for(i=1;i<=n;i++)       (n次 )

for(j=1;j<=n;j++) (n^2次 )

sum++;       (n^2次 )

解:t(n)=2n^2+n+1 =o(n^2)

2.2.   

for (i=1;i

時間複雜度計算

定義 如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t n 它是n的某一函式 t n 稱為這一演算法的 時間複雜性 當輸入量n逐漸加大時,時間複雜性的極限情形稱為演算法的 漸近時間複雜性 我們常用大o表示法表示時間複雜性,注意它是某乙個演算法的時間複雜性。大o表示只是說有上界,由定義如...

時間複雜度計算

1,演算法複雜度是在 資料結構 這門課程的第一章裡出現的,因為它稍微涉及到一些數學問題,所以很多同學感覺很難,加上這個概念也不是那麼具體,更讓許多同學複習起來無從下手,下面我們就這個問題給各位考生進行分析。首先了解一下幾個概念。乙個是時間複雜度,乙個是漸近時間複雜度。前者是某個演算法的時間耗費,它是...

計算時間複雜度

求解演算法的時間複雜度的具體步驟是 找出演算法中的基本語句 演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。計算基本語句的執行次數的數量級 只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函式中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的係數。這樣能...