(9)在pytorch中使用lstm
學習pytorch的rnn使用時最好去官方文件看一下api是如何使用的:(乙個需要注意的地方是在pytorch中rnn的輸入input的shape的三維分別是 (seq_len, batch, input_size),隱藏層h_0的shape三維分別是 (num_layers * num_directions, batch, hidden_size),輸出output的shape三維分別是 (seq_len, batch, hidden_size * num_directions),這與之前使用的tensorflow和keras將batch作為第一維有點不太一樣。
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as f
defprepare_sequence
(seq, to_ix):
idxs = [to_ix[w] for w in seq]
tensor = torch.longtensor(idxs)
return autograd.variable(tensor)
training_data = [
("everybody read that book".split(), ["nn", "v", "det", "nn"])
]word_to_ix = {}
for sent, tags in training_data:
for word in sent:
if word not
in word_to_ix:
word_to_ix[word] = len(word_to_ix)
print(word_to_ix)
tag_to_ix =
embedding_dim = 6
hidden_dim = 6
class
lstmtagger
(nn.module):
def__init__
(self, embedding_dim, hidden_dim, vocab_size, tagset_size):
super(lstmtagger, self).__init__()
self.hidden_dim = hidden_dim
self.word_embeddings = nn.embedding(vocab_size, embedding_dim)
self.lstm = nn.lstm(embedding_dim, hidden_dim)
self.hidden2tag = nn.linear(hidden_dim, tagset_size)
self.hidden = self.init_hidden()
definit_hidden
(self):
return (autograd.variable(torch.zeros(1, 1, self.hidden_dim)),
autograd.variable(torch.zeros(1, 1, self.hidden_dim)))
defforward
(self, sentence):
embeds = self.word_embeddings(sentence)
lstm_out, self.hidden = self.lstm(
embeds.view(len(sentence), 1, -1), self.hidden)
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
tag_scores = f.log_softmax(tag_space)
return tag_scores
model = lstmtagger(embedding_dim, hidden_dim, len(word_to_ix), len(tag_to_ix))
loss_function = nn.nllloss()
optimizer = optim.sgd(model.parameters(), lr=0.1)
inputs = prepare_sequence(training_data[0][0], word_to_ix)
print(inputs)
print("inputs size: ", inputs.size())
tag_scores = model(inputs)
print(tag_scores)
print("tag_scores size: ", tag_scores.size())
for epoch in range(300):
for sentence, tags in training_data:
optimizer.zero_grad()
model.hidden = model.init_hidden()
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = prepare_sequence(tags, tag_to_ix)
tag_scores = model(sentence_in)
loss = loss_function(tag_scores, targets)
loss.backward()
optimizer.step()
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs)
print(tag_scores)
執行結果如下:
variable containing:
0 12 3
4[torch.longtensor of size 5]
inputs size: torch.size([5])
variable containing:
-1.1750 -1.2042 -0.9385
-1.2109 -1.1668 -0.9398
-1.1762 -1.2194 -0.9259
-1.2111 -1.2005 -0.9135
-1.2451 -1.1828 -0.9022
[torch.floattensor of size 5x3]
tag_scores size: torch.size([5, 3])
variable containing:
-0.0832 -4.6391 -2.6573
-6.3608 -0.0345 -3.4355
-2.6776 -2.4210 -0.1714
-0.0497 -6.1473 -3.0711
-6.2093 -0.0339 -3.4624
[torch.floattensor of size 5x3]
深度學習 Pytorch學習筆記(五)
pytorch實現卷積神經網路 執行效率相對於keras慢太多 import torch import warnings import torchvision from torchvision.datasets import mnist from torch.utils.data import da...
pytorch學習筆記五 批訓練
學自莫凡python 一批5個資料 batch size 5 15個資料總共被分成3批訓練 step 3 並將所有資料整體訓練了3遍。1.匯入模組 import torch import torch.utils.data as data data是用來批訓練的模組 2.一批訓練5個資料 batch ...
pytorch學習筆記(五)調參優化
這次的實驗主要是為了針對筆記 三 和筆記 四 上的後續的操作,同時也是為了撰寫高階數字影象處理的 而做理論和資料準備。第一次實驗是在自己設計的乙個7層網路上進行的,2層卷機層,2層池化層,3層全連線層。訓練過程未做任何處理,最後結果在40 包括後來調整了很多引數,最後只能達到下面的效果。網路更換為了...